
CS 444 Operating Systems
Chapter 3 Memory Management

J. Holly DeBlois

September 14, 2024

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 1 / 55



Memory

Paraphrase of Parkinson’s Law, “Programs expand to fill the memory
available to hold them”

Average home computer nowadays has 10,000 times more memory
than the IBM 7094, the largest computer in the world in the early
1960s

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 2 / 55



Memory Hierarchy

Cache: managed by hardware

Main memory: managed by the OS, this chapter

Disk: Chapter 5

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 3 / 55



Without Memory Abstraction

User programs use physical memory addresses

Mainframes before 1960

Minicomputers before 1970

PC before 1980

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 4 / 55



Multiprogramming Without Memory Abstraction

Need to change absolute
memory addresses

Relocation

Static relocation changes
addresses at loading time

Add 16384 to 28
JMP 16412

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 5 / 55



Dynamic Relocation

Base and limit registers

OS sets these registers for each process

Within a process, the base register is
added to addresses

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 6 / 55



When Physical Memory is Too Small

Swapping

Swap whole programs in and out of memory
Leave multiple holes in memory
Periodically compact the memory
Memory compaction is a slow operation

Virtual memory

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 7 / 55



Swapping

Allocation changes as processes come into memory and leave it

The shaded regions are unused memory

OS needs to compact memory when what’s available is too
fragmented for an incoming process

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 8 / 55



Processes May Grow the Data and Stack Segments

Processes may grow the
data segment by
malloc()

Processes may grow the
stack segment by
function calls

When space runs out, a
process must be
swapped out or killed

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 9 / 55



Managing Free Memory

Bitmaps

Linked list

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 10 / 55



Memory Management with Bitmaps

The size of the allocation unit is an important design issue

We can easily determine whether a memory unit is in use

But searching for a run of a given length is slow

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 11 / 55



Memory Management with Linked Lists

Sorted by address

Double-linked

Two memory lists: processes, holes

Hole list can be sorted by sizes, or
Use multiple hole lists

Merge consecutive holes

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 12 / 55



Memory Management Algorithms

First fit

Next fit

Best fit — leaves many tiny holes

Worst fit

Quick fit uses multiple lists of specific hole sizes

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 13 / 55



Virtual Memory

There is a need to run programs that are too large to fit in memory

Solution adopted in the 1960s

Split programs into little pieces, called overlays
They are kept on the disk, swapped in and out of memory

Virtual memory

Each program has its own address space, broken up into chunks called
pages
A generalization of the base/limit register idea

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 14 / 55



Paging

The addresses in user programs are virtual addresses

The virtual address space is divided into pages

The physical memory is divided into page frames

Memory management unit (MMU) maps virtual addresses to physical
addresses

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 15 / 55



MMU

The position and function of the MMU

Here the MMU is shown as being a part of the CPU chip

Logically it can be a separate chip and was years ago

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 16 / 55



Mapping Virtual Address to Physical Address

Page table contains the relation
between virtual addresses and physical
memory addresses

This example has 16 virtual pages and
8 page frames

Every page begins on a multiple of
4,096 and ends 4,095 addresses higher

So 4K-8K really means 4096-8191, and
8K-12K means 8192-12287

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 17 / 55



Page Table

The virtual address has 16 bits

The lower 12 bits are offsets
within a page — 4KB

The higher 4 bits are virtual
page number

Page table maps the 4-bit
virtual page number to the 3-bit
page frame number

The physical address has 15 bits

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 18 / 55



Structure of a Page Table Entry

Common size: 32 bits for one entry

1 bit for present/absent

1 bit for modified (dirty)

1 bit for referenced

1 bit for caching disabled

1 or 3 bits for protection; 1 bit: read/write or read-only; 3 bits: rwx

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 19 / 55



Speeding Up Paging

Major issues faced
1 The mapping from virtual address to physical address must be fast
2 If the virtual address space is large, the page table will be large

Approaches
1 All page table in special hardware, too expensive
2 All page table in RAM, too slow
3 Hybrid: translation lookaside buffer

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 20 / 55



Translation Lookaside Buffers

TLB resides inside the MMU, with up to 256 entries

Associative memory

Given a virtual address, TLB searches all entries in parallel, checks
protection, and retrieves the page frame number

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 21 / 55



Hardware TLB Management

1 MMU consults with TLB

If a TLB hit, get the page frame number
If a TLB miss, Step 2

2 MMU consults page table (in RAM)

Evicts one entry from TLB
Replaces it with the page table entry that was just looked up

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 22 / 55



Software TLB Management

1 MMU consults with TLB

If a TLB hit, get the page frame number
If a TLB miss (fault), Step 2

2 Software searches page table (in RAM)
The page (in RAM) holding the page table entry may not be in TLB

Additional TLB faults

Keep a special page (in RAM) of TLB entries, keep this page
permanently in TLB

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 23 / 55



Different Kinds of Misses

Soft (TLB) miss: Page table entry not in TLB, but in RAM

Hard (TLB) miss: Page table entry not in RAM

Minor page fault: Page in RAM, but not in the page table of this
process

Such as a dynamically loaded library
Add it to the page table of the process that needs it

Major page fault: Page not in RAM

Segmentation fault: Invalid address or prohibited operation

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 24 / 55



Large Virtual Address Space

Two ways to work with a large virtual address space

Multilevel page tables

Inverted page tables

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 25 / 55



Multilevel Page Tables

1 page table entry is 4B

1M pages for 32-bit
address

1M entries if one page
table is used

Use 2-level page tables

Only 4 pages for page
table are needed, each
having 1K entries

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 26 / 55



x86-64 Implementation of Multilevel Page Tables

Each page has 4KB (12 bits)

4 levels of page tables

Each level has 512 entries (9 bits)

Total virtual address space: 48 bits (4 x 9 + 12)

Allowable physical address: 52 bits (40 + 12)

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 27 / 55



Inverted Page Tables

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 28 / 55



Page Replacement Algorithms

Optimal algorithm (for benchmark)

Not recently used algorithm

First-in, first-out algorithm (rarely used)

Second-chance algorithm

Clock algorithm

Least recently used (LRU) algorithm

Working set algorithm

WSClock algorithm

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 29 / 55



Not Recently Used Algorithm

R: referenced (periodically reset to 0)

M: modified

At page fault, system inspects pages

Categories of pages based on the current values of their R and M bits:

Class 0: not referenced, not modified

Class 1: not referenced, modified

Class 2: referenced, not modified

Class 3: referenced, modified

Choose a victim from the lowest nonempty class

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 30 / 55



Second-Chance Algorithm

Pages sorted in FIFO order

When a page fault occurs at time 20 and page A has its R bit set,
clear the R bit and give it a second chance

The numbers above the pages are their load times

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 31 / 55



Clock Page Replacement Algorithm

Just like second-chance

But organize the linked list as a circular list

More efficient

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 32 / 55



Simulating LRU in Software

The aging algorithm simulates LRU in software

6 pages for 5 clock ticks

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 33 / 55



Working Set Concept

Processes exhibit locality of reference

The set of pages that a process is currently using is its working set

A program causing page faults every few instructions is said to be
thrashing

The function w(k , t) is the size of the working set at time t

The set of pages used by the k most recent memory references

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 34 / 55



Working Set Algorithm

Parameters k, τ

WSClock: implementing working set with a circular list

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 35 / 55



Summary of Page Replacement Algorithms

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 36 / 55



Design Issues in Page Memory

Local versus global allocation policies

Load control

Page size

Internal fragmentation
s: process size, e: page table entry size, p: page size
overhead = se/p + p/2
s = 1MB, e = 8B, p = 4KB

Separate instruction and data spaces, rwx

Shared pages, shared libraries (DLL)

Paging daemon periodically removes pages

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 37 / 55



Local versus Global Allocation Policies

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 38 / 55



Separate Instruction and Data Spaces

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 39 / 55



Shared Pages and Libraries

Shared pages

Shared libraries

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 40 / 55



Implementation Issues

Loading a new process

Page fault handling

Instruction backup

Locking pages in memory

In particular, I/O buffers

Backing store

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 41 / 55



Loading a New Process

Create a page table in RAM, initialize it

Create a swap area on disk, initialize it

Program text and data, ready to swap in

Enter info of page table and swap area in the process table

When the process is scheduled to run

Reset MMU
Flush TLB
Load pointer to page table to a register

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 42 / 55



Page Fault Handling

1 The hardware traps to kernel, saving program counter on stack

2 Assembly code routine started to save general registers and other
volatile info

3 System discovers page fault has occurred, tries to discover which
virtual page needed

4 Once virtual address caused fault is known, system checks to see if
address valid and the protection consistent with access

5 If the selected frame is dirty, the page is scheduled for transfer to
disk, context switch takes place, suspending faulting process

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 43 / 55



Page Fault Handling

6 As soon as the frame is clean, OS looks up disk address where needed
page is, schedules disk operation to bring it in

7 When disk interrupt indicates the page has arrived, page table is
updated to reflect position, and the frame is marked as being in
normal state

8 Faulting instruction backed up to state it had when it began and
program counter is reset

9 Faulting process is scheduled, operating system returns to routine
that called it

10 Routine reloads registers and other state information, returns to user
space to continue execution

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 44 / 55



Instruction Backup

An instruction may cause a page fault

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 45 / 55



Backing Store

Paging to a static swap area Backing up pages dynamically

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 46 / 55



Separation of Policy and Mechanism

Page fault handling with an external pager

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 47 / 55



Tables Generated by Compiler

The source text being saved for the printed listing

The symbol table, names and attributes of variables

The table containing integer and floating-point constants used

The parse tree, syntactic analysis of the program

The stack used for procedure calls within compiler

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 48 / 55



Issues with Contiguous Virtual Memory

A 1-dimensional address
space with growing
tables

One table may bump
into another

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 49 / 55



Segmentation

A segmented memory allows each table to grow or shrink
independently of the other tables

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 50 / 55



Comparison of Paging and Segmentation

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 51 / 55



Pure Segmentation

Lead to checkerboarding

Use compaction to remove checkerboarding

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 52 / 55



MULTICS

Segmentation with paging

2 sizes of pages — a source of complication

A descriptor segment that points to the page tables of the segments

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 53 / 55



MULTICS Virtual Address

2 steps of translation

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 54 / 55



The x86 Segmentation with Paging

Mainly x86-32

Obsolete now

x86-64 is primarily paging

J. Holly DeBlois CS 444 Operating Systems September 14, 2024 55 / 55


