CS 444 Operating Systems

Chapter 4 File Systems

J. Holly DeBlois

September 18, 2024

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 1/47

Long-Term Information Storage

Essential requirements for long-term information storage:
It must be possible to store a very large amount of information

Information must survive termination of process using it

Multiple processes must be able to access information concurrently

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 2/47

Abstraction of a Disk

@ Details of disk |/O are in Chapter 5
@ Think of a disk as a linear sequence of fixed-size blocks and
supporting two operations:

e Read block k
o Write block k

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 3/47

Questions about Long-Term Information Storage

@ How do you find information?
@ How do you keep one user from reading another user's data?

@ How do you know which blocks are free?

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 4/47

o Created by processes

@ A kind of address space to model the disk

@ Files must be persistent

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 5/47

Windows File Systems

FAT-16

FAT-32

exFAT, extensible FAT, for flash memory
NTFS

ReFS, resilient file system, B+ tree

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 6 /47

Capacities of Windows File Systems

Block size | FAT-12 FAT-16 FAT-32

0.5 KB 2 MB

1 KB 4 MB

2 KB 8 MB 128 MB

4 KB 16 MB 256 MB 1TB

8 KB 512 MB 27TB
16 KB 1024 MB 27TB
32 KB 2048 MB 2TB

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 7/47

File Extension

.c, .o, etc
In Unix, file extensions have no meanings to the OS

The command file can determine file type without file extension

Some types of files have a “magic number” stored near the beginning
of the file

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 8/47

File Structure

o Byte sequence: Unix, Windows

@ Record sequence

o Tree
1 Byte 1 Record
e e
[Ant] Fox | P |
|| Cat " Cow ” Dog ” " Goat ” Lion ” Owl ” ” Pony ” Rat ”Worm"
(a) (b) (c)

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 9/47

File Types

Regular files

o ASCII and binary files
o ASCII files end a line by carriage return, line feed, or both

Directories (folders)

Character special files: terminals, printers, networks
Block special files (disks)

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 10 /47

File Examples

Header

Module
Magic number name
Header
Text size
Data size Date
BSS size
Symbol table size r?g&liitl:‘e Owner
Entry point Protection
Size
Flags
g Header
Text >
Object
module
Data g Header
Relocation
bits I
Object
module
Symbol A

table T

(@)

DeBlois

(b)

CS 444 Operating Systems

@ An executable

@ An archive

ptember 18, 202

File Access

@ Sequential access

@ Random access

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 12 /47

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

J. Holly DeBlois

CS 444 Operating Systems

September 18, 20

13 /47

File Operations

@ Create
@ Append
@ Delete
@ Seek
@ Open .
o Get attributes
@ Close .
@ Set attributes
@ Read
_ @ Rename
o Write

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 14 /47

Example of File System Calls

/= File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int arge, char *argv(]); /% ANSI prototype */
#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /+ protection bits for output file */

int main(int arge, char *argvl])

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE]; ° Open ()
if (arge != 3) exit(1); /* syntax error if argc is not 3 */ o Creat ()
1+ Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /+ open the source file */
if (in_fd < 0) exit(2); I+ if it cannot be opened, exit */ ° read ()
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */ Y WI‘it e ()
/% Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF_SIZE); / read a block of data */ @ close ()

if (rd_count <= 0) break; I+ if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /% wt_count <= 0 is an error */

}

/% Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /% no error on last read */
exit(0);

else
exit(5); / error on last read */

DeBlois CS 444 Operating Systems September 18, 2

Directory Structure

. ~—Root directory

@ Single-level directory
systems, flat

@ Hierarchical directory
systems

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 16 / 47

@ Absolute path names
o Delimiters: Multics >, Unix /, Windows \
e Original DOS is flat — no directories — and uses slashes for command
options
e Unix uses dashes for command options
o Relative path names
e Working directory, current directory

o Dot .
o Parent directory, dot dot ..

September 18, 2024 17 /47

J. Holly DeBlois CS 444 Operating Systems

Directory Operations

Create
Delete
Opendir
Closedir
Readdir
Rename
Link
e Hard link: faster
e Symbolic link may cross disk and partition boundaries

o Unlink

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 18 /47

File System Layout

Entire disk
Partition table Disk partition \
[ver] I |]
| Boot block | Superblock | Free space mgmt | I-nodes | Root dir | Files and directories

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 19 /47

Contig Allocation

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)

NSNS ESENEEEEEEEEEEEEEEENEEEEEERS

File B File D File F
(3 blocks) (5 blocks) (6 blocks)

(a)

(File A) (File C) (File E) (File G)

A A A A

(NSNS SEESEESEEEEEEEEEEEEEEEEEEEEEEEEEEEMS

File B 5 Free blocks 6 Free blocks
(b)

o Disadvantage: external fragmentation
o Advantages

e Simplicity

o Fast read

J. Holly DeBlois CS 444 Operating Systems September 18, 2024

Linked-List Allocation

File A

File
block
0

File
block

File
block

File
block

File
block

Physical 4

block

File B

10

12

File
block
0

File
block

File
block

File
block

Physical
block

6

@ No external fragmentation

@ Slow read

J. Holly DeBlois

3

1

CS 444 Operating Systems

14

September 18, 2024

Linked List by FAT

Physical
block

0
1
2 10
3 11
4 7 <—— File A starts here
s @ File allocation table in RAM
3 z ~—— File B starts here @ No external fragmentation
8 @ Fast read
9))
0 - @ Impractical for large disks
11 14
12 -1
13
14 -1
15 —<— Unused block

J. Holly DeBlois CS 444 Operating Systems September 18, 20

Linked List by I-Nodes

File Attributes

Address of disk block 0 E——

Address of disk block 1 —>

Address of disk block 2 —

Address of disk block 3 —

Address of disk block 4 —

Address of disk block 5 >

Address of disk block 6 —

Address of disk block 7 —

Address of block of pointers

Disk block

containing

additional
disk addresses

@ Unix file systems use i-nodes

J. Holly DeBlois CS 444 Operating Systems September 18, 20

Implementing Directories

@ A simple directory containing
fixed-size entries with the disk @ A directory in which each entry
addresses and attributes in the just refers to an i-node
directory entry

games i attributes games i g |:|
mail | attributes mail | +—
| . |
news i attributes news i ~\|:|
work | attributes work ! \\
(@) (b) l Data structure
containing the

attributes

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 24 /47

Accommodating Long File Names

@ File names in the file entries, o Fixed-size entries, file names
which have varying sizes stored separately
(File 1 entry length - Pointer to file 1's name l Entry
; forone
File 1 attributes File 1 attributes ‘ file
Entry T 5 - - —
for one < p J Pointer to file 2's name
file e c t - }]
b m P g File 2 attributes
L t X | Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r s
o n n e R
| X P r o i
File 3 entry length e ¢ t -
b u d g
File 3 attributes e t X P Heap
f I o I o I X e r s o
n e |
XNt o o
X J

J. Holly DeBlois CS 444 Operating Systems September 18, 20

Shared File

. Root directory

Shared file

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 26 /47

Ownership of Hard Linked Files

o After the original

@ Prior to linking o After linking owner removes the
file
C's directory B's directory C's directory B's directory
\ \
/ \ / \
Owner=C Owner=C Owner=C
Count =1 Count =2 Count =1

¢ l l
O O O

(a) (b) (©

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 27 /47

Journaling File Systems

@ Steps to remove a file in UNIX:

© Remove file from its directory
@ Release i-node to the pool of free i-nodes
© Return all disk blocks to pool of free disk blocks

@ Write these steps in a journal before performing them

o All steps must be idempotent

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 28 /47

Virtual File Systems

@ Unix integrates all file systems into one VFS

o POSIX interface
o VFS interface

@ Windows uses drive letters

User —
process

POSIX

VFS interface

File —

system ¢ ¢ ¢

| Buffer cache |

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 29 /47

Data Structures for VFS

File
Process descriptors
table

Function
pointers

Call from
<«——— VFSinto
FS 1

Read
function

FS1

J. Holly DeBlois CS 444 Operating Systems September 18, 2

File System Management

Disk space management
File system backups
File system consistency

Performance

Defragmentation

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 31 /47

File Size Distributions

@ Percentage of files smaller than a given size in bytes

Length | VU 1984 | VU 2005 Web Length | VU 1984 | VU 2005 Web
1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79

2 1.88 1.53 7.67 32 KB 97.21 85.87 91.65

4 2.01 1.65 8.33 64 KB 99.18 90.84 94.80

8 2.31 1.80 | 11.30 128 KB 99.84 93.73 96.93

16 3.32 2.15 | 11.46 256 KB 99.96 96.12 98.48
32 5.13 3.15 | 12.33 512 KB 100.00 97.73 98.99
64 8.71 4.98 | 26.10 1MB 100.00 98.87 99.62
128 14.73 8.03 | 28.49 2 MB 100.00 99.44 99.80
256 23.09 13.29 | 32.10 4 MB 100.00 99.71 99.87
512 34.44 20.62 | 39.94 8 MB 100.00 99.86 99.94
1 KB 48.05 30.91 | 47.82 16 MB 100.00 99.94 99.97
2 KB 60.87 46.09 | 59.44 32 MB 100.00 99.97 99.99
4 KB 75.31 59.13 | 70.64 64 MB 100.00 99.99 99.99
8 KB 84.97 69.96 | 79.69 128 MB 100.00 99.99 | 100.00

J. Holly DeBlois CS 444 Operating Systems September 18, 20 32 /47

Disk Block Size Tradeoff

@ The dashed curve, left-hand scale, gives the data rate of a disk

@ The solid curve, right-hand scale, gives the disk space efficiency

60 = 100%
3 50 80% §
& 40 ‘_§
s 60% 5
o 30+ 3
[\ o]
© 40% @
w 20— x
3 @

10l 20% ©

0 Lol de =T —d oo

1 KB 4KB 16KB 64KB 256KB 1MB

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 33 /47

Two Ways to Keep Track of Free Blocks

@ Linked list

o Use the free blocks to maintain the list of free blocks
o Take more space, 4B per free block

e Bitmap
o Take less space, 1 bit per free block

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 34 /47

Keeping Track of Free Blocks

@ A linked list @ A bitmap
Free disk blocks: 16, 17, 18
42 f» 230 (» 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 j 482 / 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

J. Holly DeBlois CS 444 Operating Systems September 18, 2

Keep a Block of Free Disk Blocks in RAM

@ An almost full o After freeing 3 disk o Alternative: keep a
block of pointers to blocks half block of free
free disk blocks disk blocks in RAM
Main Disk

memory

1L

(a) (b) (c)

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 36 /47

File System Backups

@ Backups to tape are generally made to handle one of two potential
problems:

o Recover from disaster
o Recover from stupidity

@ Incremental dumps

o Make a complete dump periodically
o Make a daily dump of modified files since the last full dump

J. Holly DeBlois CS 444 Operating Systems September 18, 2024

Logical Dump

@ The squares are directories and the circles are files
@ The shaded items have been modified since the last dump

@ Each directory and file is labeled by its i-node number

<— Root directory

Directory
that has not
changed

File that

File that has
has changed

nat Ahan~ad

J. Holly DeBlois CS 444 Operating Systems September 18, 2024

Bitmaps for Logical Dump

@ Mark all directories and all modified files
@ Unmark directories with no modified descendants
@ Write all marked directories

@ Write all marked files

@ [1]2]3]4]s]6]7]8]9]t0]11]12]13]14]15]16]17]18]19]20[21]22]23[24]25]26[27]28]20[s0]31]32]

® [1]2]3]4]s]6]7]8]o]10]11]12]13[14]15]16]17]18]19]20[21|22]23[24]25]26]27]28]20[30[31]a2]

© [1]2]3]4]s]6]7]8]o]10]11]12]13]14]15]16]17]18]19]20]21]22]28]24|25]26]27]28|20]30]31]s2]

@ [1]2]8]4]s]6]|7]|8]9]t0]11]12]13[14]15]16}17]18]19[20[21|22]23[24]25|26]27]28]20[30[31]a2]

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 39 /47

File System Consistency

@ Unix utility: fsck

@ Get blocks in use from i-nodes

@ Get free blocks from free block
list/map

Block number
234567 89101112131415

|||||||||||||||||B'°cksmuse
|0|0|1I°I1|0|0I0I0|1|1|0|0|0|1|1|Freeblocks
(@)

Block number
234567 89101112131415

1
|||||||||||||||||B'°°k~°»mue‘.e
|0|0|1|0|2|0|0|0|0|1|1|0|0|0|1|1|Freeblocks

(©

J. Holly DeBlois

CS 444 Operating Systems

e (a) Consistent

@ (b) Missing block

@ (c) Duplicate block in free list
@ (d) Duplicate data block

Block number
234567 89101112131415

|||||||||||||||||BIOCkSInuse
|0|0|0|0I1|°|0|0l0I1|1|0|0I0|1|1|Freeblocks
(b)

Block number
012345678 9101112131415

[1[+]o]+]o2[«[+]+[o[o]1]+]1]o]o] Biocks in use
[o]o[1]o]1]o]o]oo]1]1]o]o]o]1]1] Free blocks

()

September 18, 2024

40 /47

File System Performance

Disk cache, modified LRU
Read ahead for sequentially accessed files

Reduce disk-arm motion

Defragment

o Windows: defrag HDD regularly
o Linux: no need

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 41 /47

Disk Cache with Modified LRU

@ Some blocks rarely referenced two times within a short interval
@ Leads to a modified LRU scheme, taking two factors into account:

o Is the block likely to be needed again soon?
o Is the block essential to the consistency of the file system?
i-node blocks, indirect blocks, directory blocks

@ Newest and best: IBM’s adaptive replacement cache, ARC

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 42 /47

Write Modified Disk Cache to Disk

o Unix

e A system call sync
e A daemon process update calls sync every 30 sec

o Windows

o In the past, write-through cache
e Now, just like Unix

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 43 /47

Reducing Disk Arm Motion

@ Disk divided into cylinder

@ |-nodes placed at the start of o
P groups, each with its own blocks

the disk !
and i-nodes
I-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes

of the disk

Cylinder group

—
Q
=
—
O
~

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 44 /47

Directory Entries

@ An MS-DQOS directory entry

Bytes 8

3

1 10

2 2 4

File name

Size

/

NN

Extension Attributes Reserved

@ A Unix V7 directory entry

Bytes 2

14

!

Time

Date First
block
number

File name

T

I-node
number

J. Holly DeBlois

CS 444 Operating Systems

September 18, 2024

A Unix I-Node

Disk addresses

I-node
Attributes Single
| » indirect
- block
::: Double
indirect Eudl
block

1 T

RN

J. Holly DeBlois

Addresses of
data blocks

L

4

Triple

indirect

\

block

7)

\/

CS 444 Operating Systems

AN

4

\

September 18, 20

Following an Absolute Path

@ Looking up /usr/ast/mbox

Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory lusr/ast directory
11]. 6 |- 26 |
Mode Mode
1] .. size 1] e size 6| e
times times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 [mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that Jusr/ast says that /usr/ast/mbox
usr yields /usrisin is i-node /usr/ast is in is i-node
i-node 6 block 132 26 block 406 60

J. Holly DeBlois CS 444 Operating Systems September 18, 2024 47 /47

