
What is vi?

The default editor that comes with the UNIX operating system is called vi (visual editor).

[Alternate editors for UNIX environments include pico and emacs, a product of GNU.]

The UNIX vi editor is a full screen editor and has two modes of operation:

1. Command mode commands which cause action to be taken on the file, and
2. Insert mode in which entered text is inserted into the file.

In the command mode, every character typed is a command that does something to the text file
being edited; a character typed in the command mode may even cause the vi editor to enter the

insert mode. In the insert mode, every character typed is added to the text in the file; pressing the
<Esc> (Escape) key turns off the Insert mode.

While there are a number of vi commands, just a handful of these is usually sufficient for

beginning vi users. To assist such users, this Web page contains a sampling of basic vi

commands. The most basic and useful commands are marked with an asterisk (* or star) in the

tables below. With practice, these commands should become automatic.

NOTE: Both UNIX and vi are case-sensitive. Be sure not to use a capital letter in place of a

lowercase letter; the results will not be what you expect.

To Get Into and Out Of vi

To Start vi

To use vi on a file, type in vi filename. If the file named filename exists, then the first page (or

screen) of the file will be displayed; if the file does not exist, then an empty file and screen are
created into which you may enter text.

To Exit vi

Usually the new or modified file is saved when you leave vi. However, it is also possible to quit

vi without saving the file.

Note: The cursor moves to bottom of screen whenever a colon (:) is typed. This type of command

is completed by hitting the <Return> (or <Enter>) key.

Basic vi Commands

* vi filename edit filename starting at line 1

 vi -r filename recover filename that was being edited when system crashed

Page 1 of 5Basic vi Commands

9/8/2010http://www.cs.colostate.edu/helpdocs/vi.html

Moving the Cursor

Unlike many of the PC and MacIntosh editors, the mouse does not move the cursor within the
vi editor screen (or window). You must use the the key commands listed below. On some UNIX

platforms, the arrow keys may be used as well; however, since vi was designed with the Qwerty

keyboard (containing no arrow keys) in mind, the arrow keys sometimes produce strange effects
in vi and should be avoided.

If you go back and forth between a PC environment and a UNIX environment, you may find that
this dissimilarity in methods for cursor movement is the most frustrating difference between the
two.

In the table below, the symbol ^ before a letter means that the <Ctrl> key should be held down

while the letter key is pressed.

Screen Manipulation

The following commands allow the vi editor screen (or window) to move up or down several

lines and to be refreshed.

* :x<Return> quit vi, writing out modified file to file named in original invocation

 :wq<Return> quit vi, writing out modified file to file named in original invocation

 :q<Return> quit (or exit) vi

* :q!<Return> quit vi even though latest changes have not been saved for this vi call

*
j or <Return>

 [or down-arrow]
move cursor down one line

* k [or up-arrow] move cursor up one line

*
h or <Backspace>

 [or left-arrow]
move cursor left one character

*
l or <Space>

 [or right-arrow]
move cursor right one character

* 0 (zero) move cursor to start of current line (the one with the cursor)

* $ move cursor to end of current line

 w move cursor to beginning of next word

 b move cursor back to beginning of preceding word

 :0<Return> or 1G move cursor to first line in file

 :n<Return> or nG move cursor to line n

 :$<Return> or G move cursor to last line in file

Page 2 of 5Basic vi Commands

9/8/2010http://www.cs.colostate.edu/helpdocs/vi.html

Adding, Changing, and Deleting Text

Unlike PC editors, you cannot replace or delete text by highlighting it with the mouse. Instead use
the commands in the following tables.

Perhaps the most important command is the one that allows you to back up and undo your last
action. Unfortunately, this command acts like a toggle, undoing and redoing your most recent
action. You cannot go back more than one step.

The main purpose of an editor is to create, add, or modify text for a file.

Inserting or Adding Text

The following commands allow you to insert and add text. Each of these commands puts the vi

editor into insert mode; thus, the <Esc> key must be pressed to terminate the entry of text and to

put the vi editor back into command mode.

Changing Text

The following commands allow you to modify text.

 ^f move forward one screen

 ^b move backward one screen

 ^d move down (forward) one half screen

 ^u move up (back) one half screen

 ^l redraws the screen

 ^r redraws the screen, removing deleted lines

* u UNDO WHATEVER YOU JUST DID; a simple toggle

* i insert text before cursor, until <Esc> hit

 I insert text at beginning of current line, until <Esc> hit

* a append text after cursor, until <Esc> hit

 A append text to end of current line, until <Esc> hit

* o open and put text in a new line below current line, until <Esc> hit

* O open and put text in a new line above current line, until <Esc> hit

* r replace single character under cursor (no <Esc> needed)

 R replace characters, starting with current cursor position, until <Esc> hit

 cw
change the current word with new text,
starting with the character under cursor, until <Esc> hit

Page 3 of 5Basic vi Commands

9/8/2010http://www.cs.colostate.edu/helpdocs/vi.html

Deleting Text

The following commands allow you to delete text.

Cutting and Pasting Text

The following commands allow you to copy and paste text.

Other Commands

Searching Text

A common occurrence in text editing is to replace one word or phase by another. To locate
instances of particular sets of characters (or strings), use the following commands.

 cNw

change N words beginning with character under cursor, until <Esc> hit;

 e.g., c5w changes 5 words

 C change (replace) the characters in the current line, until <Esc> hit

 cc change (replace) the entire current line, stopping when <Esc> is hit

 Ncc or cNc
change (replace) the next N lines, starting with the current line,
stopping when <Esc> is hit

* x delete single character under cursor

 Nx delete N characters, starting with character under cursor

 dw delete the single word beginning with character under cursor

 dNw
delete N words beginning with character under cursor;

 e.g., d5w deletes 5 words

 D delete the remainder of the line, starting with current cursor position

* dd delete entire current line

 Ndd or dNd
delete N lines, beginning with the current line;

 e.g., 5dd deletes 5 lines

 yy copy (yank, cut) the current line into the buffer

 Nyy or yNy copy (yank, cut) the next N lines, including the current line, into the buffer

 p put (paste) the line(s) in the buffer into the text after the current line

 /string search forward for occurrence of string in text

 ?string search backward for occurrence of string in text

 n move to next occurrence of search string

Page 4 of 5Basic vi Commands

9/8/2010http://www.cs.colostate.edu/helpdocs/vi.html

Determining Line Numbers

Being able to determine the line number of the current line or the total number of lines in the file
being edited is sometimes useful.

Saving and Reading Files

These commands permit you to input and output files other than the named file with which you are
currently working.

Comments:

 N move to next occurrence of search string in opposite direction

 :.= returns line number of current line at bottom of screen

 := returns the total number of lines at bottom of screen

 ^g
provides the current line number, along with the total number of lines,
in the file at the bottom of the screen

 :r filename<Return>
read file named filename and insert after current line

(the line with cursor)

 :w<Return> write current contents to file named in original vi call

 :w newfile<Return> write current contents to a new file named newfile

 :12,35w smallfile<Return>
write the contents of the lines numbered 12 through 35 to a new file
named smallfile

 :w! prevfile<Return> write current contents over a pre-existing file named prevfile

Page 5 of 5Basic vi Commands

9/8/2010http://www.cs.colostate.edu/helpdocs/vi.html

