
Welcome to

CS220/MATH 320 –

Applied Discrete Mathematics

Summer 2020
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Instructor: Ramin Dehghanpoor

SI: Bella Baidak

TA: Diana Alisevich

I got help from and used Dr. Pomplun’s and Dr. Haspel’s slides



Instructor – Ramin Dehghanpoor

▸ Office: M-201-35

▸ Office Hours: Mondays 3:00-5:00 PM

▸ Wednesdays 3:00-5:00 PM

▸ E-Mail: ramin.dehghanpoor001@umb.edu

▸ Website: http://www.cs.umb.edu/~ramin/cs220/
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http://www.cs.umb.edu/~ramin/cs220/


Textbook and Course Website

▸Discrete Mathematics and Its Applications 

Kenneth H. Rosen

▸We will study around 400 pages of this book.

▸Important! Course homepage:

▸http://www.cs.umb.edu/~ramin/cs220/

• Contains all kinds of course information and 

also my slides
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http://www.cs.umb.edu/~ramin/cs220/


Your Evaluation

• Homework assignments(4-5)

• Midterm exam

• Final exam                         
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30%

30%

40%



Grading

▸90% < P: A

▸85% < P ≤ 90%: A-

▸80% < P ≤ 85%: B+

▸75% < P ≤ 80%: B

▸70% < P ≤ 75%: B-

▸65% < P ≤ 70%: C+
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For the assignments, exams and your course grade, the 

following scheme will be used to convert percentages into 

letter grades:

▸60% < P ≤ 65%: C

▸55% < P ≤ 60%: C-

▸50% < P ≤ 55%: D+

▸45% < P ≤ 50%: D

▸40% < P ≤ 45%: D-

▸P ≤ 40%: F



Course Requirements

▸Enroll in the course on Gradescope with Entry code 9GBK2Z

▸Enroll in the course on Piazza with Access code 9GBK2Z or

the link: piazza.com/umb/summer2020/cs220math320

▸ Your final grade should be at least 40% to pass.

▸ You also have to pass the final exam.

▸ Your TA will grade homework assignments

▸ Your SI will work with you on a regular basis to answer your 

questions and do some practice.

▸ Always ask your questions on Piazza please.
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https://www.gradescope.com/
https://piazza.com/
piazza.com/umb/summer2020/cs220math320


Academic Dishonesty
▸You are allowed to discuss problems regarding 

your homework with other students in the class.

▸However, you have to do the actual work 

(computing values, writing algorithms, drawing 

graphs, etc.) by yourself. 

▸You cannot copy anything from other sources 

(Wikipedia, other students’ work, etc.)

▸The first violation will result in zero points for the 

entire homework or exam (and official notification).

▸The second violation will result in failing the 

course. 7



Complaints about Grading

▸If you think that the grading of your homework

was unfair, please talk to the TA (Diana).

▸If you are still unhappy afterwards, please talk to 

me.

▸If you think that the grading of your exam was 

unfair, please talk to me
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Why Care about Discrete Math?

• Digital computers are based on discrete “atoms” 

(bits).

• Therefore, both a computer’s 
▸ structure (circuits) and

▸ operations (execution of algorithms)

can be described by discrete math.

• Most importantly, software engineers need to 

have a solid background in discrete mathematics 

in order to develop appropriate algorithms for 

given problems.
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Syllabus 

• A discrete mathematics course has more than 

one purpose.

• We will learn about five important themes:

Mathematical reasoning, Combinatorial analysis, 

Discrete structures, Algorithmic thinking, And 

Applications and Modeling

• Let us just take a look at the syllabus on the 

course homepage…

▸http://www.cs.umb.edu/~ramin/cs220/sillabus.pdf
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http://www.cs.umb.edu/~marc/cs220/


We will cover these parts of the 

book (8th edition):

1.1

1.3.1-1.3.4

1.4.1-1.4.10
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Logic

• Crucial for mathematical reasoning

• Used for designing electronic circuitry

• Logic is a system based on propositions.

• A proposition is a declarative statement (that 

declares a fact) that is either true or false (not 

both).

• We say that the truth value of a proposition is 

either true (T) or false (F).

• Corresponds to 1 and 0 in digital circuits

• We use letters (p,q,r,…) to denote   

propositional variables 12



The Statement/Proposition Game

▸ “Elephants are bigger than mice.”
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Is this a statement? yes

Is this a proposition? yes

What is the truth value 

of the proposition? true



The Statement/Proposition Game

▸ “520 < 111”
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Is this a statement? yes

Is this a proposition? yes

What is the truth value 

of the proposition? false



The Statement/Proposition Game

▸ “y > 5”
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Is this a statement? yes

Is this a proposition? no

Its truth value depends on the value of y, but 

this value is not specified.

We call this type of statement a propositional 

function or open sentence.



The Statement/Proposition Game

▸ “Today is January 23 and  99 < 5.”
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Is this a statement? yes

Is this a proposition? yes

What is the truth value 

of the proposition? false



The Statement/Proposition Game

▸ “Please do not fall asleep.”
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Is this a statement? no

Is this a proposition? no

Only statements can be 

propositions.

It’s a request.



The Statement/Proposition Game

▸ “If elephants were red,

▸ they could hide in cherry trees.”
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Is this a statement? yes

Is this a proposition? yes

What is the truth value 

of the proposition? probably false



The Statement/Proposition Game

▸ “x < y if and only if y > x.”
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Is this a statement? yes

Is this a proposition? yes

What is the truth value 

of the proposition? true

… because its truth value  

does not depend on 

specific values of x and y.



Combining Propositions

▸As we have seen in the previous examples, one or 

more propositions can be combined to form a single 

compound proposition.

▸Propositions that cannot be expressed in terms of 

simpler propositions, are atomic.

▸When two compound propositions always have the 

same truth values, regardless of the truth values of 

its propositional variables, we call them equivalent
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Combining Propositions

▸We formalize this by denoting propositions with 

letters such as p, q, r, s, and introducing several 

logical operators.

▸The area of logic that deals with propositions is 

called the propositional calculus or propositional 

logic.
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Logical Operators (Connectives)

▸We will examine the following logical operators:

• Negation (NOT)

• Conjunction (AND)

• Disjunction (OR)

• Exclusive or (XOR)

• Implication        (if – then)

• Biconditional (if and only if)

▸Truth tables can be used to show how these 
operators can combine propositions to compound 
propositions.
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Negation (NOT)

▸Unary Operator, Symbol:  
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P P

true false

false true

“It is not the case that P”



Conjunction (AND)

▸Binary Operator, Symbol:  
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P Q PQ

true true true

true false false

false true false

false false false



Disjunction (OR)

▸Binary Operator, Symbol:  
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P Q PQ

true true true

true false true

false true true

false false false



Exclusive Or (XOR)

▸Binary Operator, Symbol:  
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P Q PQ

true true false

true false true

false true true

false false false



Implication (if - then)

▸Binary Operator, Symbol:  
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P Q PQ

true true true

true false false

false true true

false false true



Implication (if - then)

▸ An implication is only false if the left side (called 

hypothesis) is True and the right side (called 

conclusion) is false.

▸ It is therefore equivalent to : ¬𝑃 ∨ 𝑄

▸ Example from class: If today is Monday, you have a 

class.

▸ The only way the entire statement can be false is if 

today is Monday and you don't have a class (P is true, 

Q is false).

▸ Notice that if P is false, the entire statement is true 

regardless of the value of Q: If today is not Monday 

then you either have a class or not.
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P  Q terminologies

▸ If P, then Q

▸ If P, Q

▸ P is sufficient for Q

▸ Q if P

▸ P implies Q

▸ Q whenever P

▸ Q follows from P

▸ P only if Q

▸ Q unless P
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Converse, Contrapositive, and Inverse of P  Q

▸ Converse: 𝑄 → 𝑃

▸ Contrapositive: ¬𝑄 → ¬𝑃

▸Always has the same truth value as     

𝑃 → 𝑄

▸ Inverse: ¬𝑃 → ¬𝑄
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Biconditional (if and only if sometimes written as iff)

▸Binary Operator, Symbol:  
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P Q PQ

true true true

true false false

false true false

false false true

▸ True if both P and Q have the same truth value

▸ It is equivalent to 𝑃 → 𝑄 ∧ (𝑄 → 𝑃)



Statements and Operations

▸ Statements and operators can be combined in any 

way to form new statements.
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P Q PQ  (PQ) (P)(Q)

true true true false false

true false false true true

false true false true true

false false false true true



Equivalent Statements

▸ The statements (PQ) and (P)(Q) are logically 

equivalent, because (PQ)(P)(Q) is always true.
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P Q (PQ) (P)(Q) (PQ)(P)(Q)

true true false false true

true false true true true

false true true true true

false false true true true



Logic and Bit operations

▸ Computers use bits. A bit is a symbol with two values 0 (F) 

and 1 (T)

▸ Computer bit operations correspond to the logical 

connectives.

▸ We have bitwise OR, bitwise AND, and bitwise XOR

▸ Example for two bit strings 0110110110 and 1100011101

01 1011 0110

11 0001 1101

11 1011 1111

01 0001 0100

10 1010 1011
34

Bitwise OR

Bitwise AND

Bitwise XOR



Tautologies and Contradictions

▸ A tautology is a statement that is always true.

▸ Examples:

• R(R)

• (PQ)(P)(Q)

▸ If ST is a tautology, we write ST.

▸ If ST is a tautology, we write ST.
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Tautologies and Contradictions

▸ A contradiction is a statement that is always 

false.

▸ Examples: 

• R(R)

• ((PQ)(P)(Q))

▸ The negation of any tautology is a contradiction, 

and the negation of any contradiction is a 

tautology.
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Some Logical Equivalences

Equivalence Name

𝑝 ∧ 𝑇 ≡ 𝑝
𝑝 ∨ 𝐹 ≡ 𝑝

Identity laws

𝑝 ∧ 𝐹 ≡ 𝐹
𝑝 ∨ 𝑇 ≡ 𝑇

Domination laws

𝑝 ∨ 𝑝 ≡ 𝑝
𝑝 ∧ 𝑝 ≡ 𝑝

Idempotent laws

¬(¬𝑝)) ≡ 𝑝 Double negation law

𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

Commutative laws
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Some Logical Equivalences
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𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
𝑝 ∧ (𝑝 ∨ 𝑞) ≡ 𝑝

Absorption laws

𝑝 ∨ ¬𝑝 ≡ 𝑇
𝑝 ∧ ¬𝑝 ≡ 𝐹

Negation laws

𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

Associative laws

𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ 𝑝 ∨ 𝑟
𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

Distributive laws

¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞
¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞

De Morgan’s laws



Predicates and Quantifiers

▸ The statement P(x): “x is greater than 3” has two parts. 

The first part, the variable x, is the subject of the 

statement. The second part, (P) the predicate, “is greater 

than 3” refers to a property that the subject of the 

statement can have.

▸ P(x) is the value of the propositional function P at x. Once 

a value has been assigned to the variable x, the 

statement P(x) becomes a proposition and has a truth 

value.

▸ Quantification expresses the extent to which a predicate 

is true over a range of elements
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Universal Quantification

▸Let P(x) be a propositional function.

▸Universally quantified sentence:

▸For all x in the universe of discourse (domain) P(x) 

is true.

▸Using the universal quantifier :

▸x P(x)   “for all x, P(x)” or “for every x, P(x)”

▸(Note: x P(x) is either true or false, so it is a 

proposition, not a propositional function.)
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Universal Quantification

▸Example: 

▸S(x): x is a UMB student.

▸G(x): x is a genius.

▸What does x (S(x)  G(x)) mean ?

▸“If x is a UMB student, then x is a genius.”

or

▸“All UMB students are geniuses.”
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Existential Quantification

▸Existentially quantified sentence:

▸There exists an x in the universe of discourse 
(domain) for which P(x) is true.

▸Using the existential quantifier :

▸x P(x)    “There is an x such that P(x).”

▸ “There is at least one x such that P(x).”

▸(Note: x P(x) is either true or false, so it is a 
proposition, but no propositional function.)
▸Uniqueness quantifier: The notation ∃! 𝑥𝑃(𝑥) [or ∃1𝑥𝑃(𝑥)] 
states “There exists a unique x such that P(x) is true.”
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Existential Quantification

▸Example: 

▸P(x): x is a UMB professor.

▸G(x): x is a genius.

▸What does x (P(x)  G(x)) mean ?

▸“There is an x such that x is a UMB professor and 
x is a genius.”

or

▸“At least one UMB professor is a genius.”
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Quantification

▸Another example:

▸Let the universe of discourse be the real numbers.

▸What does xy (x + y = 320) mean ?

▸“For every x there exists a y so that x + y = 320.”
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Is it true?

Is it true for the natural numbers?

yes

no



Negation

▸ (x P(x)) is logically equivalent to x (P(x)).

▸ (x P(x)) is logically equivalent to x (P(x)).
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Quantification

▸Introducing the universal quantifier  and the 

existential quantifier  facilitates the translation of 

world knowledge into predicate calculus.

▸Examples:

▸Paul beats up all professors who fail him.

▸ x([Professor(x)  Fails(x, Paul)]  BeatsUp(Paul, x))

▸All computer scientists are either rich or crazy, but not both.

▸ x (CS(x)  [Rich(x)  Crazy(x)]  [Rich(x)  Crazy(x)] )

▸Or, using XOR:

▸ x (CS(x)  [Rich(x)  Crazy(x)])
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More Practice for Predicate Logic

▸Important points:

• Define propositional functions in a useful and 

reusable manner, just like functions in a computer 

program.

• Make sure your formalized statement evaluates to 

“true” in the context of the original statement and 

evaluates to “false” whenever the original 

statement is violated.
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More Practice for Predicate Logic
▸More Examples:

▸Jenny likes all movies that Peter likes (and possibly 

more).

▸x [Movie(x)  Likes(Peter, x)  Likes(Jenny, x)]

▸There is exactly one UMass professor who won a 

Nobel prize

▸x[UMBProf(x)  Wins(x, NobelPrize)] 

y,z[y  z  UMBProf(y)  UMBProf(z) 

Wins(y, NobelPrize)  Wins(z, NobelPrize)]
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