
We will cover these parts of the 

book (8th edition):

1.5-1.7

1.8.1-1.8.4
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Nested Quantifiers

▸When one quantifier is within the scope of another. Such as

▸∀𝑥∃𝑦 𝑥 + 𝑦 = 0
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Statement When True? When False

∀𝑥∀𝑦𝑃 𝑥, 𝑦
∀𝑦∀𝑥𝑃(𝑥, 𝑦)

p(x,y) is true for every 

pair x,y.

There is a pair x,y for which 

p(x,y) is false.

∀𝑥∃𝑦𝑃(𝑥, 𝑦)
For every x there is a y 

for which p(x,y) is true.

There is an x such that p(x,y) 

is false for every y

∃𝑥∀𝑦𝑃(𝑥, 𝑦)
There is an x for which

p(x,y) is true for every y

For every x there is a y for 

which p(x,y) is false.

∃𝑥∃𝑦𝑃 𝑥, 𝑦
∃𝑦∃𝑥𝑃(𝑥, 𝑦)

There is a pair x,y for 

which p(x,y) is true.

p(x,y) is false for every pair 

x,y.



Rules of Inference

▸ Proofs in mathematics are valid arguments that establish the truth of 

mathematical statements. By an argument, we mean a sequence of 

statements that end with a conclusion. By valid, we mean that the 

conclusion, or final statement of the argument, must follow from the 

truth of the preceding statements, or premises, of the argument.

▸ Consider “If you have a current password, then you can log onto the 

network.”. Use p to represent “you have a current password” and q to 

represent “you can log onto the network”.

𝑝 → 𝑞

𝑝

∴ 𝑞

▸ Where  is the symbol that denotes “therefore”. When both 𝑝 → 𝑞
and 𝑝 are true, we know that 𝑞 must also be true. We say this form 

of argument is valid because whenever all its premises are true,        

the conclusion must also be true.
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Rules of Inference

▸ How to show an argument is valid?

1. Use a truth table → a boring approach!

2. First stablish the validity of rules of inference. Then use 

them to construct more complicated valid argument 

forms.

▸Rules of inference provide the justification of the steps used 

in a proof.

▸One important rule is called modus ponens or the law of 

detachment. It is based on the tautology (p(pq))  q. We 

write it in the following way:

𝑝 → 𝑞

𝑝

∴ 𝑞
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The two hypotheses 𝑝 and 𝑝 → 𝑞 are 

written in a column, and the conclusion

below a bar.



Rules of Inference

Rule of Inference Name

𝑝
𝑝 → 𝑞

∴ 𝑞
Modus ponens

¬𝑞
𝑝 → 𝑞

∴ ¬𝑝
Modus tollens

𝑝 → 𝑞
𝑞 → 𝑟

∴ 𝑝 → 𝑟

Hypothetical 

syllogism

𝑝 ∨ 𝑞
¬𝑝
∴ 𝑞

Disjunctive 

syllogism
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Rule of Inference Name

𝑝
∴ 𝑝 ∨ 𝑞 Addition

𝑝 ∧ 𝑞
∴ 𝑝 Simplification

𝑝
𝑞

∴ 𝑝 ∧ 𝑞
Conjunction

𝑝 ∨ 𝑞
¬𝑝 ∨ 𝑟
∴ 𝑞 ∨ 𝑟

Resolution



Arguments

▸Example:

▸“If 101 is divisible by 3, then 1012 is divisible by 9. 
101 is divisible by 3. Consequently, 1012 is divisible 
by 9.”

▸Although the argument is valid, its conclusion is 
incorrect, because one of the hypotheses is false 
(“101 is divisible by 3.”).

▸If in the above argument we replace 101 with 102, 
we could correctly conclude that 1022 is divisible by 
9.

6



Arguments

▸Which rule of inference was used in the last 

argument?

▸p: “101 is divisible by 3.”

▸q: “1012 is divisible by 9.”

7

𝑝
𝑝 → 𝑞

∴ 𝑞
Modus ponens

Unfortunately, one of the hypotheses (p) is false. Therefore,  

the conclusion q is incorrect.



Arguments

▸Another example:

▸“If it rains today, then we will not have a barbeque 

today. If we do not have a barbeque today, then we 

will have a barbeque tomorrow.

Therefore, if it rains today, then we will have a 

barbeque tomorrow.”

▸This is a valid argument: If its hypotheses are true, 

then its conclusion is also true.
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Arguments

▸Let us formalize the previous argument:

▸p: “It is raining today.”

▸q: “We will not have a barbecue today.”

▸r: “We will have a barbecue tomorrow.”

▸So the argument is of the following form:
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𝑝 → 𝑞
𝑞 → 𝑟
∴ 𝑝 → 𝑟

Hypothetical 

syllogism



Arguments

▸Another example:

▸Gary is either intelligent or a good actor.

▸If Gary is intelligent, then he can count 

from 1 to 10.

▸Gary can only count from 1 to 2.

▸Therefore, Gary is a good actor.

▸i: “Gary is intelligent.”

▸a: “Gary is a good actor.”

▸c: “Gary can count from 1 to 10.”
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Arguments

▸i: “Gary is intelligent.”

a: “Gary is a good actor.”

c: “Gary can count from 1 to 10.”

▸Step 1: c Hypothesis

▸Step 2: i  c            Hypothesis

▸Step 3: i Modus Tollens Steps 1 & 2

▸Step 4: a  i Hypothesis

▸Step 5: a Disjunctive Syllogism

Steps 3 & 4

▸Conclusion: a (“Gary is a good actor.”)
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Arguments

▸Yet another example:

▸If you listen to me, you will pass CS 220.

▸You passed CS 220.

▸Therefore, you have listened to me.

▸Is this argument valid?

▸No, it assumes ((pq) q)  p.

▸This statement is not a tautology. It is false if p is 

false and q is true. This type of incorrect reasoning  

is called the fallacy of affirming the conclusion.
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Rules of Inference for Quantified Statements

𝑥 𝑝(𝑥)__________
 𝑝(𝑐) 𝑖𝑓 𝑐𝑈
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Universal 

instantiation

𝑝(𝑐) for an arbitrary 𝑐___________________
 ∀𝑥 𝑝(𝑥)

Universal 

generalization

∃𝑥 𝑝(𝑥)______________________

 𝑝(𝑐) for some element 𝑐

Existential 

instantiation

𝑝(𝑐) for some element 𝑐____________________
 ∃𝑥 𝑝(𝑥)

Existential 

generalization



Rules of Inference for Quantified Statements

▸Example:

▸Every UMB student is a genius. 

▸George is a UMB student.

▸Therefore, George is a genius.

▸U(x): “x is a UMB student.”

▸G(x): “x is a genius.”
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Rules of Inference for Quantified Statements

▸The following steps are used in the argument:

▸Step 1: x (U(x)  G(x)) Hypothesis

▸Step 2: U(George)  G(George) Univ. instantiation 

using Step 1
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Universal 

instantiation

Step 3: U(George) Hypothesis

Step 4: G(George) Modus ponens

using Steps 2 & 3

𝑥 𝑝(𝑥)__________
 𝑝(𝑐) 𝑖𝑓 𝑐𝑈



Mathematical Reasoning

▸We need mathematical reasoning to

• determine whether a mathematical argument is 

correct or incorrect and

• construct mathematical arguments.

▸Mathematical reasoning is not only important for 

conducting proofs and program verification, but 

also for artificial intelligence systems (drawing 

inferences).
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Terminology

▸An axiom is a basic assumption about 

mathematical structures that needs no proof.

▸We can use a proof to demonstrate that a particular 

statement is true. A proof consists of a sequence of 

statements that form an argument.

▸The steps that connect the statements in such a 

sequence are the rules of inference.

▸Cases of incorrect reasoning are called fallacies.

▸A theorem is a statement that can be shown to     

be true. Less important theorems sometimes are    

called propositions. 17



Terminology

▸A lemma is a simple theorem used as an 

intermediate result in the proof of another theorem.

▸A corollary is a proposition that follows directly 

from a theorem that has been proved.

▸A conjecture is a statement whose truth value is 

unknown. It is a statement that is being proposed to 

be a true statement, usually on the basis of some 

partial evidence. Once it is proven, it becomes a 

theorem.
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Proving Theorems

▸Direct proof:

▸An implication pq can be proved by showing that 

if p is true, then q is also true.

▸Example: Give a direct proof of the theorem 

“If n is odd, then n2 is odd.”

▸Idea: Assume that the hypothesis of this implication 

is true (n is odd). Then use rules of inference and 

known theorems to show that q must also be true   

(n2 is odd).
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Proving Theorems

▸n is odd.

▸Then n = 2k + 1, where k is an integer.

▸Consequently, n2 = (2k + 1)2.

▸ = 4k2 + 4k + 1

▸ = 2(2k2 + 2k) + 1

▸Since n2 can be written in this form, it is odd.
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Proving Theorems

▸Indirect proof (Contrapositive):

▸An implication pq is equivalent to its contra-

positive q  p. Therefore, we can prove pq by 

showing that whenever q is false, then p is also false.

▸Example: Give an indirect proof of the theorem 

“If 3n + 2 is odd, then n is odd.”

▸Idea: Assume that the conclusion of this implication 

is false (n is even). Then use rules of inference and 

known theorems to show that p must also be false 

(3n + 2 is even).
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Proving Theorems

▸n is even.

▸Then n = 2k, where k is an integer.

▸It follows that 3n + 2 = 3(2k) + 2 
▸ = 6k + 2
▸ = 2(3k + 1)

▸Therefore, 3n + 2 is even.

▸We have shown that the contrapositive of the 
implication is true, so the implication itself is also  
true (If 3n + 2 is odd, then n is odd).
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Proving Theorems

▸Indirect proof (contradiction):
▸Suppose we want to prove that a statement 𝑝 is true. 

Furthermore, suppose that we can find a contradiction 𝑞 such 

that ¬𝑝 → 𝑞 is true. Because 𝑞 is false, but ¬𝑝 → 𝑞 is true, 

we can conclude that ¬𝑝 is false, which means that 𝑝 is true.

▸Example: Show that at least four of any 22 days must fall on 

the same day of the week.

▸Idea: Let 𝑝 be “At least four of 22 chosen days fall on the 

same day of the week”. Suppose ¬𝑝 is true. So at most    

three of the 22 days fall on the same day. But each week    

has 7 days. So it’s not possible.
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Proving Theorems

▸Proofs of equivalence:

▸To prove 𝑝 ↔ 𝑞 , we show that 𝑝 → 𝑞 and 𝑞 → 𝑝 are 

both true. 𝑝 ↔ 𝑞 ↔ 𝑝 → 𝑞 ∧ (𝑞 → 𝑝)

▸Counterexamples:

▸To show that ∀𝑥𝑃(𝑥) is false, we need only find a 

counterexample, that is, an example 𝑥 for which 

𝑃(𝑥) is false.
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Mistakes in Proofs

▸1. Some mistakes result from the introduction of 

steps that do not logically follow from those that 

precede it.

▸Example: Proof of 1=2
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Mistakes in Proofs

▸Solution:

▸Every step is valid except for step 5, where we

divided both sides by a − b. The error is that a − b

equals zero; division of both sides of an equation

by the same quantity is valid as long as this

quantity is not zero.
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Mistakes in Proofs

▸2. Some incorrect arguments are based on a fallacy 

called begging the question. This fallacy occurs 

when one or more steps of a proof are based on the 

truth of the statement being proved. In other words, 

this fallacy arises when a statement is proved using 

itself, or a statement equivalent to it. That is why this 

fallacy is also called circular reasoning.

▸Example: Proof of n is an even integer whenever 

𝑛2 is an even integer.

▸Proof: Suppose that 𝑛2 is even. Then 𝑛2 = 2𝑘 for 

some integer k. Let 𝑛 = 2𝑙 for some integer 𝑙. This 

shows that n is even. 27



Mistakes in Proofs

▸Solution:

▸This argument is incorrect. The statement “let 𝑛
= 2𝑙 for some integer 𝑙” occurs in the proof. No

argument has been given to show that n can be

written as 2𝑙 for some integer 𝑙. This is circular

reasoning because this statement is equivalent to

the statement being proved, namely, “n is even.”

The result itself is correct; only the method of

proof is wrong.
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Exhaustive Proof and Proof by Cases

▸Exhaustive Proof:

▸Proving by examining all possibilities. For example 

prove that 𝑛 + 1 3 ≥ 3𝑛 if 𝑛 is a positive integer with 

𝑛 ≤ 4.

▸Proof by cases:

▸Must cover all the possible cases that arise in a 

theorem. 

▸Example in next slide
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Proving by Cases

▸For every positive integer n, n(n + 1) is even.

▸Idea: Let us first show that the product of an even 
number m and an odd number n is always even:

▸m = 2k
▸n = 2p + 1
▸mn = 2k (2p + 1) = 4kp + 2k
▸mn = 2(2kp + k)

▸Since k and p are integers, (2kp + k) is an integer 
as well, and we have shown that mn is even. 
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Proving by Cases

▸The remainder of the proof becomes easy if we 
separately consider each of the two main situations 
that can occur:

▸Case I: n is even.

▸Then n(n + 1) means that we multiply an even 
number with an odd one. As shown above, the result 
must be even.

▸Case II: n is odd.

▸Then n(n + 1) means that we multiply an odd 
number with an even one. As shown above, the 
result must be even.

▸Since there are no other cases, we have proven 
that n(n + 1) is always even.
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Existence and Uniqueness Proofs

▸Existence Proofs:

▸A proof of a proposition of the form ∃𝑥𝑃(𝑥).

1. Constructive: Finding a witness “𝑎” such that 𝑃(𝑎) is true.

2. Nonconstructive: Prove that ∃𝑥𝑃(𝑥) is true in some other 
way. For example by contradiction.

▸ Example for constructive: Show that there is a positive 

integer that can be written as the sum of cubes of positive 

integers in two different ways.

▸ Solution: 1729 = 103 + 93 = 123 + 13

▸ Example for nonconstructive: Show that there exist 

irrational numbers 𝑥 and 𝑦 such that 𝑥𝑦 is rational.

▸ Solution: Consider the number 2
2
. So 𝑥 = 2 , y = 2

or 𝑥 = 2
2
, 𝑦 = 2 .
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Existence and Uniqueness Proofs

▸Uniqueness Proofs:

▸A proof of a proposition of the form ∃! 𝑥𝑃(𝑥). So it has 2 parts:

1. Existence: An element with this property exits.

2. Uniqueness: If x and y both have this property, then x=y

▸ Example: Show that if 𝑎 and 𝑏 are real numbers and 𝑎 ≠ 0, 

then there is a unique real number 𝑟 such that 𝑎𝑟 + 𝑏 = 0.

▸ Solution: (Existence) 𝑟 = −
𝑏

𝑎

▸ (Uniqueness) suppose 𝑠 is another real number with this 

property. So we have 𝑎𝑟 + 𝑏 = 𝑎𝑠 + 𝑏 ⇒ 𝑎𝑟 = 𝑎𝑠 ⇒ 𝑟 = 𝑠
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