
We will cover these parts of the

book (8th edition):

2.6

3.1.1-3.1.3 (up to page 207)

3.2.1-3.2.4

3.3.1, 3.3.2

1

Matrices

▸A matrix is a rectangular array of numbers.

▸A matrix with m rows and n columns is called an

mn matrix.

▸Example:

2



















08
3.05.2

11
A is a 3x2 matrix

A matrix with the same number of rows and columns is called

square.

Two matrices are equal if they have the same number of

rows and columns and the corresponding entries in every

position are equal.

Matrices

▸A general description of an mn matrix A = [aij]:

3

























mnmm

n

n

aaa

aaa

aaa

A

...

...

...

...

...

...

21

22221

11211

 inii aaa ...,,, 21























mj

j

j

a

a

a

.

.

.
2

1

i-th row of A

j-th column

of A

Matrix Addition

▸Let A = [aij] and B = [bij] be mn matrices.

▸The sum of A and B, denoted by A+B, is the mn

matrix that has aij + bij as its (i, j)th element.

▸In other words, A+B = [aij + bij].

▸Example:

4





















































17
141
103

14
63
95

03
84
12

Matrix Multiplication

▸Let A be an mk matrix and B be a kn matrix.

▸The product of A and B, denoted by AB, is the mn

matrix with (i, j)th entry equal to the sum of the

products of the corresponding elements from the i-th

row of A and the j-th column of B.

▸In other words, if AB = [cij], then

5

tj

k

t

itkjikjijiij babababac 



1

2211 ...

Matrix Multiplication

▸A more intuitive description of calculating C = AB:

6






















011
500
412
103

A














43
10

12
B

- Take the first column of B

- Turn it counterclockwise by 90 degrees and superimpose

it on the first row of A

- Multiply corresponding entries in A and B and

add the products: 3x2 + 0x0 + 1x3 = 9

- Enter the result in the upper-left corner of C

Matrix Multiplication

- Now superimpose the first column of B on the

second, third, …, m-th row of A to obtain the

entries in the first column of C (same order).

- Then repeat this procedure with the second,

third, …, n-th column of B, to obtain to obtain

the remaining columns in C (same order).

- After completing this algorithm, the new matrix

C contains the product AB.

7

Matrix Multiplication

▸Let us calculate the complete matrix C:

8






















011
500
412
103

A














43
10

12
B

















C

9

8

15

-2

7

15

20

-2

Identity Matrices

▸The identity matrix of order n is the nn matrix

In = [ij], where ij = 1 if i = j and ij = 0 if i  j:

9























1...00

...

...

...
0...10
0...01

A

Multiplying an mxn matrix A by an identity matrix of

appropriate size does not change this matrix:

AIn = ImA = A

Powers and Transposes of Matrices

▸The power function can be defined for square
matrices. If A is an nn matrix, we have:

▸A0 = In,
▸Ar = AAA…A (r times the letter A)

▸The transpose of an mn matrix A = [aij], denoted
by At, is the nm matrix obtained by interchanging
the rows and columns of A.

▸In other words, if At = [bij], then bij = aji for
i = 1, 2, …, n and j = 1, 2, …, m.

10

Powers and Transposes of Matrices

▸Example

:

11










411
302tA















43
10

12
A

A square matrix A is called symmetric if A = At.

Thus A = [aij] is symmetric if aij = aji for all

i = 1, 2, …, n and j = 1, 2, …, n.

















493
921

315
A
















131
131
131

B

A is symmetric, B is not.

Zero-One Matrices

▸A matrix with entries that are either 0 or 1 is called a

zero-one matrix. Zero-one matrices are often used

like a “table” to represent discrete structures.

▸We can define Boolean operations on the entries in

zero-one matrices:

12

a b ab

0 0 0

0 1 0

1 0 0

1 1 1

a b ab

0 0 0

0 1 1

1 0 1

1 1 1

Zero-One Matrices

▸Let A = [aij] and B = [bij] be mn zero-one matrices.

▸Then the join of A and B is the zero-one matrix with

(i, j)th entry aij  bij. The join of A and B is denoted by

A  B.

▸The meet of A and B is the zero-one matrix with (i,

j)th entry aij  bij. The meet of A and B is denoted by

A  B.

13

Zero-One Matrices

▸Example:

14
















01
10
11

A















00
11
10

B

Join:



































01
11
11

0001
1110
1101

BA

Meet:



































00
10
10

0001
1110
1101

BA

Zero-One Matrices

▸Let A = [aij] be an mk zero-one matrix and

B = [bij] be a kn zero-one matrix.

▸Then the Boolean product of A and B, denoted by

AB, is the mn matrix with (i, j)th entry [cij], where

▸cij = (ai1  b1j)  (ai2  b2i)  …  (aik  bkj).

▸Note that the actual Boolean product symbol has a

dot in its center.

▸Basically, Boolean multiplication works like the

multiplication of matrices, but with computing 

instead of the product and  instead of the sum.

15

Zero-One Matrices

▸Example:

16







11
01

A






10
10

B


















10
10

)11()11()01()01(

)10()11()00()01(
BA

Zero-One Matrices

▸Let A be a square zero-one matrix and r be a

positive integer.

▸The r-th Boolean power of A is the Boolean

product of r factors of A. The r-th Boolean power of A

is denoted by A[r].

▸A[0] = In,

▸A[r] = AA…A (r times the letter A)

17

▸Algorithms

18

Algorithms

▸What is an algorithm?

▸An algorithm is a finite set of precise instructions for

performing a computation or for solving a problem.

▸This is a rather vague definition. You will get to

know a more precise and mathematically useful

definition when you attend CS420 or CS620.

▸But this one is good enough for now…

19

Algorithms

▸ Properties of algorithms:

• Input from a specified set,

• Output from a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

20

Algorithm Examples

▸We will use a pseudocode to specify algorithms,

which slightly reminds us of Basic and Pascal.

▸Example: an algorithm that finds the maximum

element in a finite sequence

▸procedure max(a1, a2, …, an: integers)

▸max := a1

▸for i := 2 to n

▸ if max < ai then max := ai

▸Return max{max is the largest element}

21

Algorithm Examples

▸Another example: a linear search algorithm, that
is, an algorithm that linearly searches a sequence for
a particular element.

▸procedure linear_search(x: integer; a1, a2, …, an:
integers)

▸i := 1
▸while (i  n and x  ai)
▸ i := i + 1
▸if i  n then location := i
▸else location := 0
▸Return location{location is the subscript of the
term that equals x, or is zero if x is not found}

22

Algorithm Examples

▸If the terms in a sequence are ordered, a binary

search algorithm is more efficient than linear search.

▸The binary search algorithm iteratively restricts the

relevant search interval until it closes in on the

position of the element to be located.

23

Algorithm Examples

24

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

25

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

26

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

27

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

28

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

found !

Algorithm Examples
▸procedure binary_search(x: integer; a1, a2, …, an:

integers)
▸i := 1 {i is left endpoint of search interval}
▸j := n {j is right endpoint of search interval}
▸while (i < j)
▸begin
▸ m := (i + j)/2
▸ if x > am then i := m + 1
▸ else j := m
▸end
▸if x = ai then location := i
▸else location := 0
▸Return location{location is the subscript of the
term that equals x, or is zero if x is not found}

29

Algorithm Examples

▸procedure bubblesort(a1, a2, …, an: real numbers,
n≥ 2)
▸for i := 1 to n-1

▸for j := 1 to n-1
▸if 𝑎𝑗 > 𝑎𝑗+1 then interchange 𝑎𝑗 and 𝑎𝑗+1

▸{a1, a2, …, an is in increasing order}

30

Algorithm Examples

▸Bubble sort:
▸It puts a list into increasing order by successively comparing
adjacent elements, interchanging them if they are in the wrong
order. To carry out the bubble sort, we perform the basic
operation, that is, interchanging a larger element with a smaller
one following it, starting at the beginning of the list, for a full
pass. We iterate this procedure until the sort is complete.

31

The Growth of Functions

▸The growth of functions is usually described using

the big-O notation.

▸Definition: Let f and g be functions from the

integers or the real numbers to the real numbers.

▸We say that f(x) is O(g(x)) if there are constants C

and k such that

▸|f(x)|  C|g(x)|

▸whenever x > k.

▸This is read as “f(x) is big-oh of g(x)”
32

The Growth of Functions

▸When we analyze the growth of complexity

functions, f(x) and g(x) are always positive.

▸Therefore, we can simplify the big-O requirement to

▸f(x)  Cg(x) whenever x > k.

▸If we want to show that f(x) is O(g(x)), we only need

to find one pair (C, k) (which is never unique).

33

The Growth of Functions

▸The idea behind the big-O notation is to establish

an upper boundary for the growth of a function f(x)

for large x.

▸This boundary is specified by a function g(x) that is

usually much simpler than f(x).

▸We accept the constant C in the requirement

▸f(x)  Cg(x) whenever x > k,

▸because C does not grow with x.

▸We are only interested in large x, so it is OK if

f(x) > Cg(x) for x  k.

34

The Growth of Functions

▸Example:

▸Show that f(x) = x2 + 2x + 1 is O(x2).

▸For x > 1 we have:

▸x2 + 2x + 1  x2 + 2x2 + x2

▸ x2 + 2x + 1  4x2

▸Therefore, for C = 4 and k = 1:

▸f(x)  Cx2 whenever x > k.

▸ f(x) is O(x2).

35

The Growth of Functions

▸Question: If f(x) is O(x2), is it also O(x3)?

▸Yes. x3 grows faster than x2, so x3 grows also faster

than f(x).

▸Therefore, we always have to find the smallest

simple function g(x) for which f(x) is O(g(x)).

▸Let 𝑓 𝑥 = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0,

where 𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 are real numbers. Then

𝑓 𝑥 is 𝑂(𝑥𝑛)

36

The Growth of Functions

▸“Popular” functions g(n) are
▸n log n, 1, 2n, n2, n!, n, n3, log n

▸Listed from slowest to fastest growth:

• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

37

The Growth of Combinations of Functions

▸Suppose that 𝑓1(𝑥) is 𝑂 𝑔1 𝑥 and that 𝑓2(𝑥) is

𝑂 𝑔2 𝑥 . Then (𝑓1+𝑓2)(𝑥) is 𝑂(𝑔(𝑥)), where 𝑔 𝑥
= (max(|𝑔1(𝑥)|, |𝑔2(𝑥)|)) for all 𝑥.

▸Suppose that 𝑓1(𝑥) is 𝑂 𝑔1 𝑥 and that 𝑓2(𝑥) is

𝑂 𝑔2 𝑥 . Then (𝑓1𝑓2)(𝑥) is 𝑂 𝑔1 𝑥 𝑔2 𝑥 .

38

Complexity of Algorithms

▸Obviously, on sorted sequences, binary search is

more efficient than linear search.

▸How can we analyze the efficiency of algorithms?

▸We can measure the

• time (number of elementary computations) and

• space (number of memory cells) that the algorithm

requires.

▸These measures are called time complexity and

space complexity, respectively.

39

Time Complexity

▸ The time complexity of an algorithm can be

expressed in terms of the number of operations

used by the algorithm when the input has a

particular size.

▸ Time complexity is described in terms of the

number of operations required instead of actual

computer time because of the difference in time

needed for different computers to perform basic

operations.

40

Time Complexity

▸What is the time complexity of the linear search algorithm?

▸We will determine the worst-case number of comparisons as
a function of the number n of terms in the sequence.

▸By the worst-case performance of an algorithm, we mean the
largest number of operations needed to solve the given
problem.

▸The worst case for the linear algorithm occurs when the
element to be located is not included in the sequence.

▸In that case, every item in the sequence is compared to
the element to be located.

41

Algorithm Examples

▸Here is the linear search algorithm again:
▸procedure linear_search(x: integer; a1, a2, …, an:

integers)
▸i := 1
▸while (i  n and x  ai)
▸ i := i + 1
▸if i  n then location := i
▸else location := 0
▸Return location{location is the subscript of the
term that equals x, or is zero if x is not found}

42

Complexity

▸For n elements, the loop

▸while (i  n and x  ai)

i := i + 1

▸is processed n times, requiring 2n comparisons.

▸When it is entered for the (n+1)th time, only the

comparison i  n is executed and terminates the loop.

▸Finally, the comparison

if i  n then location := i

is executed, so all in all we have a worst-case time

complexity of 2n + 2.

43

Reminder: Binary Search Algorithm
▸procedure binary_search(x: integer; a1, a2, …, an:

integers)
▸i := 1 {i is left endpoint of search interval}
▸j := n {j is right endpoint of search interval}
▸while (i < j)
▸begin
▸ m := (i + j)/2
▸ if x > am then i := m + 1
▸ else j := m
▸end
▸if x = ai then location := i
▸else location := 0
▸Return location{location is the subscript of the
term that equals x, or is zero if x is not found}

44

Complexity

▸What is the time complexity of the binary search

algorithm?

▸Again, we will determine the worst-case number of

comparisons as a function of the number n of terms in

the sequence.

▸Let us assume there are n = 2k elements in the list,

which means that k = log n.

▸If n is not a power of 2, it can be considered part of a

larger list, where 2k < n < 2k+1.

45

Complexity

▸In the first cycle of the loop

▸while (i < j)

▸begin

▸ m := (i + j)/2

▸ if x > am then i := m + 1

▸ else j := m

▸end

▸the search interval is restricted to 2k-1 elements,

using two comparisons.

46

Complexity

▸In the second cycle, the search interval is restricted

to 2k-2 elements, again using two comparisons.

▸This is repeated until there is only one (20) element

left in the search interval.

▸At this point 2k comparisons have been conducted.

47

Complexity

▸Then, the comparison

▸while (i < j)

▸exits the loop, and a final comparison

▸if x = ai then location := i

▸determines whether the element was found.

▸Therefore, the overall time complexity of the

binary search algorithm is 2k + 2 = 2 log n + 2.

48

Complexity

▸In general, we are not so much interested in the

time and space complexity for small inputs.

▸For example, while the difference in time

complexity between linear and binary search is

meaningless for a sequence with n = 10, it is

gigantic for n = 230.

49

Complexity

▸For example, let us assume two algorithms A and

B that solve the same class of problems.

▸The time complexity of A is 5,000n, the one for B is

1.1n for an input with n elements.

50

Complexity

▸ Comparison: time complexity of algorithms A and B

51

Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5x109

1.1n

3

2.5x1041

13,781

4.8x1041392

Complexity

▸This means that algorithm B cannot be used for

large inputs, while running algorithm A is still

feasible.

▸So what is important is the growth of the

complexity functions.

▸The growth of time and space complexity with

increasing input size n is a suitable measure for the

comparison of algorithms.

52

The Growth of Functions

▸A problem that can be solved with polynomial worst-

case complexity is called tractable.

▸Problems of higher complexity are called

intractable.

▸Problems that no algorithm can solve are called

unsolvable.

▸You will find out more about this in CS420.

53

Complexity Examples

▸What does the following algorithm compute?

▸procedure who_knows(a1, a2, …, an: integers)
▸who_knows := 0
▸for i := 1 to n-1
▸ for j := i+1 to n
▸ if |ai – aj| > who_knows then

who_knows := |ai – aj|
▸{who_knows is the maximum difference between any
two numbers in the input sequence}

▸Comparisons: n-1 + n-2 + n-3 + … + 1

▸ = (n – 1)n/2 = 0.5n2 – 0.5n

▸Time complexity is O(n2).
54

Complexity Examples

▸Another algorithm solving the same problem:

▸procedure max_diff(a1, a2, …, an: integers)

▸min := a1

▸max := a1

▸for i := 2 to n

▸ if ai < min then min := ai

▸ else if ai > max then max := ai

▸max_diff := max - min

▸Comparisons (worst case): 2n - 2

▸Time complexity is O(n).

55

