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Now let us study some…

▸Number Theory
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Division

▸ Let 𝑎 be an integer and 𝑑 a positive integer. Then 

there are unique integers 𝑞 and 𝑟, with 0 ≤ 𝑟 < 𝑑, 

such that 𝑎 = 𝑑𝑞 + 𝑟.

▸ 𝑑 is called divisor, 𝑎 is called the dividend, 𝑞 is 

called the quotient, and 𝑟 is called the remainder. 

This notation is used to express the quotient and 

remainder:

▸ 𝑞 = 𝑎 𝒅𝒊𝒗 𝑑, 𝑟 = 𝑎 𝒎𝒐𝒅 𝑑
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The Division Algorithm

▸Example:

▸When we divide 17 by 5, we have

▸17 = 53 + 2.

• 17 is the dividend,

• 5  is the divisor,

• 3  is called the quotient, and

• 2  is called the remainder.
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The Division Algorithm

▸Another example:

▸What happens when we divide -11 by 3 ?

▸Note that the remainder cannot be negative.

▸-11 = 3(-4) + 1.

• -11 is the dividend,
• 3  is the divisor,
• -4 is called the quotient, and
• 1  is called the remainder.
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Division

▸If a and b are integers with a  0, we say that 

a divides b if there is an integer c so that b = ac.

▸When a divides b we say that a is a factor of b and 

that b is a multiple of a.

▸The notation a | b means that a divides b.

▸We write a X b when a does not divide b.

▸(see book for correct symbol).
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Divisibility Theorems

▸For integers a, b, and c it is true that

• if a | b and a | c, then a | (b + c)
▸ Example: 3 | 6 and 3 | 9, so 3 | 15.

• if a | b, then a | bc for all integers c
▸ Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, …

• if a | b and b | c, then a | c
▸ Example: 4 | 8 and 8 | 24, so 4 | 24. 

• if a | b and a | c, then a | mb + nc
▸ Example: 4 | 8 and 4 | 12, so 4 | 40. 
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Modular Arithmetic

▸Let a be an integer and m be a positive integer.

We denote by a mod m the remainder when a is 

divided by m.

▸Examples:

8

9 mod 4 = 1

9 mod 3 = 0

9 mod 10 = 9

-13 mod 4 = 3



Congruences

▸Let a and b be integers and m be a positive integer. 

We say that a is congruent to b modulo m if 

m divides a – b.

▸We use the notation a  b (mod m) to indicate that a 

is congruent to b modulo m.

▸In other words:

a  b (mod m) if and only if a mod m = b mod m. 
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Congruences

▸Examples:

▸Is it true that 46  68 (mod 11) ?
▸Yes, because 11 | (46 – 68).

▸Is it true that 46  68 (mod 22)?
▸Yes, because 22 | (46 – 68).

▸For which integers z is it true that z  12 (mod 10)?
▸It is true for any z{…,-28, -18, -8, 2, 12, 22, 32, …}

▸Theorem: Let m be a positive integer. The integers a 
and b are congruent modulo m if and only if there is an 
integer k such that a = b + km.
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Congruences

▸Theorem: Let m be a positive integer. 
If a  b (mod m) and c  d (mod m), then 
a + c  b + d (mod m) and ac  bd (mod m).

▸Proof:
▸We know that a  b (mod m) and c  d (mod m) 
implies that there are integers s and t with 
b = a + sm and d = c + tm. 

▸Therefore,
▸b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
▸bd = (a + sm)(c + tm) = ac + m(at + cs + stm).

▸Hence, a + c  b + d (mod m) and ac  bd (mod m).
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Congruences

▸ Let 𝑚 be a positive integer and let 𝑎 and 𝑏 be 

integers. Then

▸ 𝑎 + 𝑏 𝒎𝒐𝒅𝑚 = ൫ 𝑎 𝒎𝒐𝒅𝑚
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Arithmetic Modulo 𝒎

▸ We can define arithmetic operations on 𝒁𝒎, the set of 

nonnegative integers less than 𝑚, that is, the set    

0, 1, … ,𝑚 − 1 :

▸ Addition: 𝑎 +𝑚 𝑏 = 𝑎 + 𝑏 𝒎𝒐𝒅𝑚

▸ Multiplication: 𝑎 ⋅𝑚 𝑏 = 𝑎 ⋅ 𝑏 𝒎𝒐𝒅𝑚

▸ Example:

▸ 7 +11 9 = 7 + 9 𝑚𝑜𝑑 11 = 16 𝑚𝑜𝑑 11 = 5

▸ 7 ⋅11 9 = 7 ⋅ 9 𝑚𝑜𝑑 11 = 63 𝑚𝑜𝑑 11 = 8
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Arithmetic Modulo 𝒎

▸ +𝑚 and ⋅𝑚 satisfy these properties: (if a,b,c belong to 𝑍𝑚)

▸ Closure: 𝑎 +𝑚 𝑏 and 𝑎 ⋅𝑚 𝑏 belong to 𝒁𝒎
▸ Associativity: 𝑎 +𝑚 𝑏 +𝑚 𝑐 = 𝑎 +𝑚 (b +𝑚 𝑐) and 

𝑎 ⋅𝑚 𝑏 ⋅𝑚 𝑐 = 𝑎 ⋅𝑚 (b ⋅𝑚 𝑐)

▸ Commutativity: 𝑎 +𝑚 𝑏 = 𝑏 +𝑚 𝑎 and 𝑎 ⋅𝑚 𝑏 = 𝑏 ⋅𝑚 𝑎

▸ Identity elements: The elements 0 and 1 are identity 

elements for addition and multiplication modulo 𝑚, 

respectively. 𝑎 +𝑚 0 = 0 +𝑚 𝑎 = 𝑎 and 𝑎 ⋅𝑚 1 = 1 ⋅𝑚 𝑎 = 𝑎

▸ Additive inverses: If 𝑎 ≠ 0, then 𝑚− 𝑎 is an additive 

inverse of 𝑎 modulo 𝑚 and 0 is its own additive inverse. 

That is 𝑎 +𝑚 (𝑚 − 𝑎) = 0 and 0 +𝑚 0 = 0

▸ Distributivity: 𝑎 ⋅𝑚 b +𝑚 𝑐 = (𝑎 ⋅𝑚 𝑏) +𝑚 (𝑎 ⋅𝑚 𝑐)
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Representations of Integers

▸Let b be a positive integer greater than 1.
Then if n is a positive integer, it can be expressed 
uniquely in the form:

▸n = akb
k + ak-1b

k-1 + … + a1b + a0,

▸where k is a nonnegative integer,
▸a0, a1, …, ak are nonnegative integers less than b,
▸and ak  0.

▸Example for b=10:

▸859 = 8102 + 5101 + 9100
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Representations of Integers

▸Example for b=2 (binary expansion):

▸(10110)2 = 124 + 122 + 121 = (22)10

▸Example for b=16 (hexadecimal expansion):

▸(we use letters A to F to indicate numbers 10 to 15)

▸(3A0F)16 = 3163 + 10162 + 15160 = (14863)10

▸Example for b=8 (octal expansion)

▸(7016)8= 783 + 181 + 680 = 3598
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Representations of Integers

▸How can we construct the base b expansion of an 
integer n?

▸First, divide n by b to obtain a quotient q0 and 
remainder a0, that is,

▸n = bq0 + a0, where 0  a0 < b.

▸The remainder a0 is the rightmost digit in the base b 
expansion of n.

▸Next, divide q0 by b to obtain:

▸q0 = bq1 + a1, where 0  a1 < b.

▸a1 is the second digit from the right in the base b 
expansion of n. Continue this process until you     
obtain a quotient equal to zero.
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Representations of Integers

▸Example:

What is the base 8 expansion of (12345)10  ?

▸First, divide 12345 by 8:

▸12345 = 81543 + 1

▸1543 = 8192 + 7

▸192 = 824 + 0

▸24 = 83 + 0

▸3 = 80 + 3

▸The result is: (12345)10 = (30071)8.
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Representations of Integers

▸procedure base_b_expansion(n, b: positive integers)

▸q := n

▸k := 0

▸while q  0

▸begin

▸ ak := q mod b

▸ q := q/b

▸ k := k + 1

▸end

▸return (ak-1 … a1a0)

{the base b expansion of n is (ak-1 … a1a0)b }
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Conversion between Binary, Octal, and 

Hexadecimal expansion

▸ Conversion between binary and octal and between binary 

and hexadecimal expansions is extremely easy because 

each octal digit corresponds to a  block of three binary digits 

and each hexadecimal digit corresponds to a block of four 

binary digits, with these correspondences shown below with 

these correspondences shown:
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Addition of Integers

▸How do we (humans) add two integers?

▸Example:        7583
+ 4932

21

51521

111 carry

Binary expansions:            (1011)2

+ (1010)2

10

carry1

10

1

1( )2



Addition of Integers

▸Let a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

▸How can we algorithmically add these two binary 
numbers?

▸First, add their rightmost bits:

▸a0 + b0 = c02 + s0,

▸where s0 is the rightmost bit in the binary 
expansion of a + b, and c0 is the carry.

▸Then, add the next pair of bits and the carry:

▸a1 + b1 + c0 = c12 + s1,

▸where s1 is the next bit in the binary expansion of a 
+ b, and c1 is the carry.
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Addition of Integers

▸Continue this process until you obtain cn-1.

▸The leading bit of the sum is sn = cn-1.

▸The result is:

▸a + b = (snsn-1…s1s0)2
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Addition of Integers

▸Example:

▸Add a = (1110)2 and b = (1011)2.

▸a0 + b0 = 0 + 1 = 02 + 1, so that c0 = 0 and s0 = 1.

▸a1 + b1 + c0 = 1 + 1 + 0 = 12 + 0, so c1 = 1           

and s1 = 0.

▸a2 + b2 + c1 = 1 + 0 + 1 = 12 + 0, so c2 = 1           

and s2 = 0.

▸a3 + b3 + c2 = 1 + 1 + 1 = 12 + 1, so c3 = 1           

and s3 = 1.

▸s4 = c3 = 1.

▸Therefore, s = a + b = (11001)2.
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Addition of Integers

▸procedure add(a, b: positive integers)

▸c := 0

▸for j := 0 to n-1 {larger integer (a or b) has n digits}

▸begin

▸ d := (aj + bj + c)/2

▸ sj := aj + bj + c – 2d

▸ c := d

▸end

▸sn := c

▸return (s0s1…sn)                                                    

{the binary expansion of the sum is (snsn-1…s1s0)2}
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Multiplication of Integers

▸How do we (humans) multiply two integers?

▸Example:        7583
x 32

26

15166

Binary expansions:

+    22749
242656

110
x    101

110
000

+   110

11110



Multiplication of Integers

▸Let a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

▸How can we algorithmically add these two binary 
numbers?

▸The conventional algorithm works as follows. Using 
the distributive law, we see that:

▸𝑎𝑏 = 𝑎 𝑏02
0 + 𝑏12

1 +⋯+ 𝑏𝑛−12
𝑛−1

= 𝑎 𝑏02
0 + 𝑎 𝑏12

1 +⋯+ 𝑎 𝑏𝑛−12
𝑛−1

▸We first note that 𝑎𝑏𝑗 = 𝑎 if 𝑏𝑗 = 1 and 𝑎𝑏𝑗 = 0 if      
𝑏𝑗 = 0. Each time we multiply a term by 2, we shift   
its binary expansion one place to the left and add 
a zero at the tail end of the expansion. 
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Multiplication of Integers

▸Consequently, we can obtain 𝑎𝑏𝑗 2𝑗 by shifting the 
binary expansion of 𝑎𝑏𝑗 j places to the left, adding j
zero bits at the tail end of this binary expansion. 
Finally, we obtain 𝑎𝑏 by adding the 𝑛 integers 𝑎𝑏𝑗2

𝑗,   
𝑗 = 0, 1, 2, … , 𝑛 − 1.
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Multiplication of Integers

▸Example:

▸Product of a = (110)2 and b = (101)2.

▸𝑎𝑏0 ∙ 2
0 = 110 2 ∙ 1 ∙ 2

0 = 110 2

▸𝑎𝑏1 ∙ 2
1 = 110 2 ∙ 0 ∙ 2

1 = 0000 2

▸𝑎𝑏2 ∙ 2
2 = 110 2 ∙ 1 ∙ 2

2 = 11000 2

▸Now add 110 2, 0000 2, and 11000 2. Carrying 

out these additions shows that 𝑎𝑏 = 11110 2
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Multiplication of Integers

▸procedure multiply(a, b: positive integers) {the binary 

expansions of a and b are (an-1an-2…a1a0)2 and (bn-1bn-2…b1b0)2

respectively}

▸for j := 0 to n-1

▸ if 𝑏𝑗 = 1 then 𝑐𝑗 ≔ 𝑎 shifted 𝑗 places

▸ else 𝑐𝑗 ≔ 0 {c0,c1, …, cn-1 are the partial products}

▸p := 0

▸for j := 0 to n-1

▸ p := add(p, 𝑐𝑗)

▸return p {p is the value of 𝑎𝑏}

{the binary expansion of the sum is (snsn-1…s1s0)2}
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Fast modular exponentiation

▸ Find 𝒃𝒏 𝒎𝒐𝒅𝒎.

▸ First observe that we can avoid using large amount of 

memory if we compute 𝑏𝑛 𝒎𝒐𝒅𝑚 by successively 

computing 𝑏𝑘 𝒎𝒐𝒅𝑚 for 𝑘 = 1, 2, … , 𝑛 using the fact that 

𝑏𝑘+1 𝒎𝒐𝒅𝑚 = 𝑏 𝑏𝑘 𝒎𝒐𝒅𝑚 𝒎𝒐𝒅𝑚. However, this 

approach is impractical because it requires 𝑛 − 1
multiplications of integers and 𝑛 might be huge.

▸ Faster way:

▸ Suppose 𝑛 = 𝑎𝑘−1…𝑎1𝑎0 2. First note that 𝑏𝑛

= 𝑏(𝑎𝑘−1∙2
𝑘−1+⋯+𝑎1∙2+𝑎0) = 𝑏𝑎𝑘−1∙2

𝑘−1
∙ ⋯ ∙ 𝑏𝑎1∙2∙ 𝑏𝑎0
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Fast modular exponentiation

▸ This shows that to compute 𝑏𝑛, we need only compute the 

values of 𝑏, 𝑏2, (𝑏2)2 = 𝑏4, (𝑏4)2 = 𝑏8, … , 𝑏2
𝑘
. Once we have 

these values, we multiply the terms 𝑏2
𝑗

in this list, where    

𝑎𝑗 = 1. 

▸ This gives us 𝑏𝑛. Then the algorithm finds 𝑏 𝒎𝒐𝒅 𝑚, 

𝑏2 𝒎𝒐𝒅𝑚, 𝑏4 𝒎𝒐𝒅𝑚, …, 𝑏2
𝑘−1

𝒎𝒐𝒅𝑚 and multiplies 

together those terms 𝑏2
𝑗
𝒎𝒐𝒅𝑚 where 𝑎𝑗 = 1, finding the 

remainder of the product when divided by 𝑚 after each 

multiplication.
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Fast modular exponentiation

▸procedure modular_exponentiation(b: integer, 𝑛
= 𝑎𝑘−1𝑎𝑘−2…𝑎1𝑎0 2, m: positive integer)

▸𝑥 ≔ 1
▸𝑝𝑜𝑤𝑒𝑟 ≔ 𝑏 𝒎𝒐𝒅𝑚
▸for i := 0 to k-1

▸begin

▸ if 𝑎𝑖 = 1 then 𝑥 ≔ 𝑥 ∙ 𝑝𝑜𝑤𝑒𝑟 𝒎𝒐𝒅𝑚
▸ 𝑝𝑜𝑤𝑒𝑟 ≔ 𝑝𝑜𝑤𝑒𝑟 ∙ 𝑝𝑜𝑤𝑒𝑟 𝒎𝒐𝒅𝑚
▸end

▸return 𝑥 {𝑥 equals 𝑏𝑛 𝒎𝒐𝒅𝑚}
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Fast modular exponentiation

▸Example: find 3644 𝒎𝒐𝒅 645.
▸644 = (1010000100)2
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Primes

▸A positive integer p greater than 1 is called prime if 

the only positive factors of p are 1 and p.

▸A positive integer that is greater than 1 and is not 

prime is called composite.

▸The fundamental theorem of arithmetic:

▸Every positive integer can be written uniquely as 

the product of primes, where the prime factors are 

written in order of increasing size.
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Primes

▸Examples:

36

3·5

48 =

17 =

100 =

512 =

515 =

28 =

15 =

2·2·2·2·3 = 24·3

17

2·2·5·5 = 22·52

2·2·2·2·2·2·2·2·2 = 29

5·103

2·2·7 = 22·7



Primes

▸If n is a composite integer, then n has a prime 
divisor less than or equal      .

▸This is easy to see: if n is a composite integer, it 
must have two divisors p1 and p2 such that p1p2 = n 
and p1  2 and p2  2. 

▸p1 and p2 cannot both be greater than 𝑛, because 
then p1p2 would be greater than n. 

▸If the smaller number of p1 and p2 is not a prime 
itself, then it can be broken up into prime factors  
that are smaller than itself but  2.

37
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Greatest Common Divisors

▸Let a and b be integers, not both zero.
▸The largest integer d such that d | a and d | b is 
called the greatest common divisor of a and b.

▸The greatest common divisor of a and b is denoted 
by gcd(a, b).

▸Example 1: What is gcd(48, 72) ?

▸The positive common divisors of 48 and 72 are 
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24. 

▸Example 2: What is gcd(19, 72) ?

▸The only positive common divisor of 19 and 72 is
1, so gcd(19, 72) = 1. 
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Greatest Common Divisors

▸Using prime factorizations:

▸a = p1
a

1 p2
a

2 … pn
a

n ,  b = p1
b

1 p2
b

2 … pn
b

n ,

▸where p1 < p2 < … < pn and ai, bi  N for 1  i  n

▸gcd(a, b) = p1
min(a

1
, b

1
) p2

min(a
2
, b

2
) … pn

min(a
n
, b

n
)

▸Example:

39

a = 60 = 22 31 51

b = 54 = 21 33 50

gcd(a, b) = 21 31 50 = 6



Relatively Prime Integers

▸Definition:

▸Two integers a and b are relatively prime if 

gcd(a, b) = 1.

▸Examples:

▸Are 15 and 28 relatively prime?

▸Yes, gcd(15, 28) = 1.

▸Are 55 and 28 relatively prime?

▸Yes, gcd(55, 28) = 1.

▸Are 35 and 28 relatively prime?

▸No, gcd(35, 28) = 7.
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Relatively Prime Integers

▸Definition:

▸The integers a1, a2, …, an are pairwise relatively 

prime if gcd(ai, aj) = 1 whenever 1  i < j  n.

▸Examples:

▸Are 15, 17, and 27 pairwise relatively prime?

▸No, because gcd(15, 27) = 3.

▸Are 15, 17, and 28 pairwise relatively prime?

▸Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1    

and gcd(17, 28) = 1.
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Least Common Multiples

▸Definition:

▸The least common multiple of the positive integers 

a and b is the smallest positive integer that is 

divisible by both a and b.

▸We denote the least common multiple of a and b by 

lcm(a, b).

▸Examples:

42

lcm(3, 7) = 21

lcm(4, 6) = 12

lcm(5, 10) = 10



Least Common Multiples

▸Using prime factorizations:

▸a = p1
a

1 p2
a

2 … pn
a

n ,  b = p1
b

1 p2
b

2 … pn
b

n ,

▸where p1 < p2 < … < pn and ai, bi  N for 1  i  n

▸lcm(a, b) = p1
max(a

1
, b

1
) p2

max(a
2
, b

2
) … pn

max(a
n
, b

n
)

▸Example:
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a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51 = 4 27 5 = 540



GCD and LCM

44

a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51 = 540

gcd(a, b) = 21 31 50 = 6

Theorem:  ab = gcd(a,b) ∙ lcm(a,b)



The Euclidean Algorithm 
▸The Euclidean Algorithm finds the greatest 

common divisor of two integers a and b. 

▸For example, if we want to find gcd(287, 91), we 

divide 287 (the larger number) by 91 (the smaller 

one):

▸287 = 913 + 14

 287 - 913 = 14

 287 + 91(-3) = 14

▸We know that for integers a, b and c,

if a | b, then a | bc for all integers c.

▸Therefore, any divisor of 91 is also a divisor of     

91(-3). 45



The Euclidean Algorithm 

287 + 91(-3) = 14

▸We also know that for integers a, b and c,
▸if a | b and a | c, then a | (b + c).

▸Therefore, any divisor of 287 and 91 must also be a 
divisor of 287 + 91(-3), which is 14.

▸Consequently, the greatest common divisor of 287 
and 91 must be the same as the greatest common 
divisor of 14 and 91:

▸gcd(287, 91) = gcd(14, 91).

46



The Euclidean Algorithm 

▸In the next step, we divide 91 by 14:

▸91 = 146 + 7

▸This means that gcd(14, 91) = gcd(14, 7).

▸So we divide 14 by 7:

▸14 = 72 + 0

▸We find that 7 | 14, and thus gcd(14, 7) = 7.

▸Therefore, gcd(287, 91) = 7

▸So we have this Lemma:

▸Let 𝒂 = 𝒃𝒒 + 𝒓, where 𝒂, 𝒃, 𝒒, and 𝒓 are integers.

Then 𝐠𝐜𝐝 𝒂, 𝒃 = 𝐠𝐜𝐝(𝒃, 𝒓)
47



The Euclidean Algorithm 

▸In pseudocode, the algorithm can be implemented 
as follows: 

▸procedure gcd(a, b: positive integers)
▸x := a
▸y := b
▸while y  0
▸begin
▸ r := x mod y
▸ x := y
▸ y := r
▸end
▸return x {x is gcd(a, b)}
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GCDs as Linear Combinations

▸Bézout’s Theorem: If 𝑎 and 𝑏 are positive integers, 
then there exist integers 𝑠 and 𝑡 such that      
gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏. 
▸𝑠 and 𝑡 are called Bézout’s coefficients and the 
above equation is called Bézout’s identity.

▸We will see two methods to find the Bézout’s identity 
of two integers.

1. Working backward through the divisions of the 
Euclidean algorithm.

2. Extended Euclidean algorithm
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GCDs as Linear Combinations

▸To run this extended Euclidean algorithm, we set 𝑠0 = 1
, 𝑠1 = 0, 𝑡0 = 0, and 𝑡1 = 1 and let

𝑠𝑗 = 𝑠𝑗−2 − 𝑞𝑗−1𝑠𝑗−1 and 𝑡𝑗 = 𝑡𝑗−2 − 𝑞𝑗−1𝑡𝑗−1

▸ for 𝑗 = 2,3, … , 𝑛, where the 𝑞𝑗 are the quotients in the 

divisions used when the Euclidean algorithm finds 

gcd(a, b).
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GCDs as Linear Combinations

▸Example for first method:
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GCDs as Linear Combinations
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GCDs as Linear Combinations

▸Example for second method:
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GCDs as Linear Combinations
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GCDs as Linear Combinations
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Lemma: If 𝑎, 𝑏, and 𝑐 are positive integers such 

that gcd 𝑎, 𝑏 = 1 and 𝑎|𝑏𝑐, then 𝑎|𝑐.

Proof:

gcd 𝑎, 𝑏 = 1 ⇒ ∃𝑠, 𝑡 𝑠𝑎 + 𝑡𝑏 = 1 ⇒ 𝑠𝑎𝑐 + 𝑡𝑏𝑐 = 𝑐

We have 𝑎|𝑏𝑐 ⇒ 𝑎|𝑡𝑏𝑐 and we know that 𝑎|𝑠𝑎𝑐.

So we have 𝑎|𝑠𝑎𝑐 + 𝑡𝑏𝑐 ⇒ 𝑎|𝑐



GCDs as Linear Combinations
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Lemma: If 𝑝 is a prime and 𝑝|𝑎1𝑎2⋯𝑎𝑛, where 

each 𝑎𝑖 is an integer, then 𝑝|𝑎𝑖 for some 𝑖.

Proof:

By induction. (will be covered in the next 

sessions)



GCDs as Linear Combinations

57

Lemma: Let 𝑚 be a positive integer and let 𝑎, 𝑏, 

and 𝑐 be integers. If 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚) and 

gcd(𝑐,𝑚) = 1, then 𝑎 ≡ 𝑏 (mod 𝑚).

Proof:

𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑚) ⇒ 𝑚|𝑎𝑐 − 𝑏𝑐 = 𝑐(𝑎 − 𝑏)

Because gcd 𝑐,𝑚 = 1, based on the previous 

lemma, we have 𝑚|𝑎 − 𝑏 ⇒ 𝑎 ≡ 𝑏 (mod 𝑚)



Now it’s Time for…

▸Induction 

and

Recursion

58



Induction

▸The principle of mathematical induction is a useful 

tool for proving that a certain predicate is true for all 

natural numbers.

▸It cannot be used to discover theorems, but only to 

prove them.

▸To prove that propositional function 𝑃(𝑛) is true for 

all positive integers 𝑛, we complete two steps:

1. Basis step: Verify 𝑃(1) (or 𝑃(0)) is true.

2. Inductive step: Show that the conditional 

statement 𝑃(𝑘) → 𝑃(𝑘 + 1) is true for all      

positive integers 𝑘.
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Induction

▸Example: Show that 𝑛 < 2𝑛 for all positive integers 𝑛.

▸Let 𝑃(𝑛) be the proposition "𝑛 < 2𝑛“.

1. Show that 𝑃(1) is true.

P(1) is true, because 1 < 21

2. Show that if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true

Assume that 𝑛 < 2𝑛 is true. We need to show that 

𝑃(𝑛 + 1) is true, i.e. 𝑛 + 1 < 2𝑛+1.

We start from P(n): 𝑛 < 2𝑛 ⇒ 𝑛 + 1 < 2𝑛 + 1 ≤ 2𝑛

+ 2𝑛 = 2𝑛+1

Therefor, if 𝑛 < 2𝑛, then 𝑛 + 1 < 2𝑛+1

So 𝑛 < 2𝑛 is true for any positive integer.
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Induction

▸Example: 1 + 2 +⋯+ 𝑛 = σ𝑖=1
𝑛 𝑖 =

𝑛 𝑛+1

2

1. Show that 𝑃(1) is true.

P(1) is true, because 1 =
1∗2

2

2. Show that if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true

1 + 2 +⋯+ 𝑛 =
𝑛 𝑛 + 1

2
⇒ 1 + 2 +⋯+ 𝑛 + 𝑛 + 1

=
𝑛 𝑛 + 1

2
+ 𝑛 + 1 = 𝑛 + 1

𝑛

2
+ 1

=
𝑛 + 1 𝑛 + 2

2
=
(𝑛 + 1)( 𝑛 + 1 + 1)

2

So 𝑃(𝑛) is true for any positive integer.
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