We will cover these parts of the
book (8t" edition):

4.1,4.2
4.3.1-4.3.3
4.3.6-4.3.8
5.1




Now let us study some...

» Number Theory
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Division
» Let a be an integer and d a positive integer. Then

there are unigue integers g and r, with 0 < r < d,
suchthata = dq + r.

» IS called . a Is called the g 1S
called the . and 7 is called the
This notation Is used to express the guotient and
remainder:

» g = adivd, r = amodd
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The Division Algorithm

»When we divide 17 by 5, we have

»17 =53 + 2.

17 1s the dividend,

5 Is the divisor,

3 Is called the quotient, and
2 1s called the remainder.




The Division Algorithm

>

»What happens when we divide -11 by 3 ?

» Note that the remainder cannot be negative.
»-11 = 3:(-4) + 1.

-11 is the dividend,

3 Is the divisor,

-4 |s called the quotient, and
1 is called the remainder.




Division

»|f a and b are integers with a # 0, we say that

a b If there Is an integer c so that b = ac.
»When a divides b we say that a is a of b and
that b is a of a.

» The notation means that a divides b.

»\We write when a does not divide b.

>
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Divisibility Theorems

»For integers a, b, and c it is true that

 ifa|banda]|c,thena|(b+c)
> 3|6and 3|9, so3]|15.

bc for all integers c

« ifa| b, then a|
] 10,s05|20,5]30,5]40, ...

>

n
5
 ifa|bandb|c,th na|
4|8and 8|24, so 4| 24.

 fal|banda|c,thena| mb+nc
> 418and4|12,so04|40.




Modular Arithmetic

»Let a be an integer and m be a positive integer.
We denote by the remainder when a is
divided by m.

>

9mod4= 1
9mod3= 0
9mod 10= 9

-13mod4= 3
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Congruences

»Let a and b be integers and m be a positive integer.
We say that If
m divides a — b.

»\We use the notation to Indicate that a
IS congruent to b modulo m.

»In other words:
a=Db (mod m) if and only if

OOOOOO



Congruences

>

»|s it true that 46 = 68 (mod 11) ?

>

»|s it true that 46 = 68 (mod 22)?

>

» For which integers z is it true that z= 12 (mod 10)?

>

> Let m be a positive integer. The integers
and b are congruent modulo m if and only if there Is
Integer k such that a = b + km.

10
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Congruences

> _et m be a positive integer.
If a=b (mod m) and ¢ =d (mod m), then
at+c=Db+d(modm)andac=bd (mod m).

>

»We know that a=b (mod m) and c =d (mod m)
iImplies that there are integers s and t with
b=a+smandd=c+tm.

» Therefore,
rb+d=(a+sm)+(c+tm)=(a+c)+m(s+t)and
»bd = (a + sm)(c + tm) = ac + m(at + cs + stm).

»Hence,a+c=b+d(mod m) and ac = bd (mod

11
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Congruences

» Let m be a positive integer and let a and b be
Integers. Then

» (a + b) modm = ((amodm)

12
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Arithmetic Modulo m

We can define arithmetic operations on Z,,,, the set of
nonnegative integers less than m, that is, the set
{0,1,..,m— 1}:

a+, b=(a+b)modm
.a-m,b=(a-b)modm

74+119=(74+9) mod11=16mod 11 =5
7119=(7:9)mod11 =63 mod11 =8

13
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Arithmetic Modulo m

+., and -, satisfy these properties: (if a,b,c belong to Z,,,)
.a+,,banda-,, bbelongto Z,,
:(a+,,b) +,c=a+,, (b+,,c) and
(@ mb) mec=a-p by
a+,b=b+,,aanda-,,b=>b-,a
. The elements 0 and 1 are identity

elements for addition and multiplication modulo m,
respectively. a +,,0=0+,,a=aanda -, 1=1-,a=a
. If a # 0, then m — a Is an additive

Inverse of a modulo m and 0 is its own additive inverse.
Thatisa+,,(m —a) = 0and0+,,0=0

ca g (bt+pc)=(@mb)+tym(@p,c)

14
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Representations of Integers

»Let b be a positive integer greater than 1.
Then if n Is a positive integer, it can be expressed
In the form:

»n =abk+a b+ ... +ab+a,,

»where k Is a nonnegative integer,
»a,, 44, ..., a, are nonnegative integers less than b,
»and a, = 0.

>
»859 = 8-10% + 5:10% + 9-10°

15
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Representations of Integers

>

»(10110), = 1.24 + 1.22 + 1.21 = (22),,

>

>
»(3A0F), = 3-16% + 10-162 + 15-16° = (14863),

»(7016)4= 7-8°% + 1.8 + 6-8°= 3598

16




Representations of Integers

»How can we construct the base b expansion of an
iInteger n?

»First, divide n by b to obtain a quotient g, and
remainder a,, that Is,

>

» The remainder a, Is the rightmost digit in the base b
expansion of n.

»Next, divide q, by b to obtain:
»a, IS the second digit from the right in the base b

expansion of n. Continue this process until you
obtain a gquotient equal to zero.

17
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Representations of Integers

>

What is the base 8 expansion of (12345),, ?

»First, divide 12345 by 8:
»12345 =8-1543 + 1

»1543 = 8:192 + 7
»192=8-24+0
»24 =83 +0
»3=80+3

>

18




Representations of Integers

»procedure base b expansion(n, b: positive integers)

»( =N
»k =0

»while q =0
»begin

> a, :=qmodb
»  q:=lg/bl

> k=k+1
»end

»return (a, 4 ... a8,a,)

19
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Conversion between Binary, Octal, and
Hexadecimal expansion

» Conversion between binary and octal and between binary
and hexadecimal expansions is extremely easy because
each octal digit corresponds to a block of three binary digits
and each hexadecimal digit corresponds to a block of four
binary digits, with these correspondences shown below with
these correspondences shown:

Decimal

Hexadecimal

Octal

o o o o
— = = =

Binary 10 | 11 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110

.
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Addition of Integers

»How do we (humans) add two integers?

111 carry
» Example:
12515
11 carry
Binary expansions: (1011),
+ (1010),

(10101),

21




Addition of Integers

»Let a = (a,.185.2---8189)2, b = (D.10,5...D10¢),
»How can we add these two binary
numbers?

» First, add their rightmost bits:

>a0 + bO — C02 + So,

»where s, Is the In the binary
expansion of a + b, and ¢, Is the

» Then, add the next pair of bits and the carry:
»where s, Is the In the binary expansion of
+ b, and c, Is the carry.

22
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Addition of Integers

» Continue this process until you obtain c, ;.
» The leading bit of the sumis s, =c, ;.

»The result Is:
»a+ b =(S,S1---S1Sp)>

23




Addition of Integers

>

»Add a = (1110), and b = (1011),.
»a,+ by, =0+1=02+1,sothatc,=0and s, = 1.
»a, +b;+cy;=1+1+0=12+0,s0c, =1
and s, = 0.
»a, +b,+c,=1+0+1=12+0,s0¢c,=1
and s, = 0.
and s; = 1.

»S, =Cy = 1.
» Therefore, s =a + b = (11001)..

24
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Addition of Integers
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Multiplication of Integers

»How do we (humans) multiply two integers?

» Example:

Binary expansions:

26




Multiplication of Integers

»Leta = (a,,a,....8;8y),, b = (0,40, ,...0,0,),

»How can we add these two binary
numbers?

» The conventional algorithm works as follows. Using
the distributive law, we see that:

»ab = a(bOZO + b121 + oo bn—12n_1)
= a(bh2%) + a(b;21) + -+ a(b,_ 2" 1)

»\We first note that ab; = a If b; =1 and ab; =0 If
b; = 0. Each time we multiply a term by 2, we shift

Its binary expansion one place to the left and add
a zero at the tail end of the expansion.

27
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Multiplication of Integers

»Consequently, we can obtain (ab;)2/ by shifting the
binary expansion of ab; ] places to the left, adding |
zero bits at the tail end of this binary expansion.
Finally, we obtain ab by adding the n integers abjzf,

j=0,12,..,n—1.

28
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Multiplication of Integers

>

» Product of a = (110), and b = (101),.
»ab, - 2° = (110),-1-2° = (110),

»ab, - 21 = (110),-0- 21 = (0000),
»ab, - 2% = (110), - 1-2% = (11000),

»Now add (110),, (0000),, and (11000),. Carrying
out these additions shows that ab = (11110),

29
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Multiplication of Integers

30




Fast modular exponentiation

First observe that we can avoid using large amount of
memory if we compute b™ mod m by successively
computing b* mod m for k = 1, 2, ..., n using the fact that
b**1 mod m = b(b* mod m) mod m. However, this
approach is impractical because it requires n — 1
multiplications of integers and n might be huge.

Suppose n = (ay_q ...a1ay),. First note that b™

— b(ak—1'2k_1+'“+a1'2+ao) — bak—1‘2k_1 e pA1°2, paAo

.
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Fast modular exponentiation

» This shows that to compute b", we need only compute the
values of b, b2, (h?)? = b*, (b*)? = b8, ..., b%*. Once we have

these values, we multiply the terms b2’ in this list, where
Clj = 1.

» This gives us b™. Then the algorithm finds b mod m,

b* mod m, b* mod m, ..., b2 mod m and multiplies
together those terms b2’ mod m where a; = 1, finding the

remainder of the product when divided by m after each
multiplication.

.
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Fast modular exponentiation

»procedure modular_exponentiation(b: integer, n
= (ay_1a5_, ...a10y),, M. POSIitive integer)

v o= |
»power := b modm
»for 1:=0to k-1

»begin

> if a; = 1then x :== (x - power) mod m
> power = (power - power) mod m
»end

»return x {x equals b™ mod m}

33




>

»644 = (1010000100),

. . . . o~ o~ —
()
—

o~

= (: Because a, = 0, we have x = 1 and power = 32 mod 645 = 9 mod 645 =9;

N B W R

=

: Because a; = 0, we have x = | and power = 92 mod 645 = 81 mod 645 = 81;

. Because a; = I, we find that x = (81 - 396) mod 645 = 471 and power = 396° mod 645 = 156,816

. Because ag = 0, we have x = 471 and power = 812 mod 645 = 6561 mod 645 = 111;
0:

Fast modular exponentiation

- find 3°4* mod 645.

Because a, = I, we have x = | - 81 mod 645 = 81 and power = 812 mod 645 = 6561 mod 645 = 111;
Because a; = 0, we have x = 81 and power = 1112 mod 645 = 12,321 mod 645 = 66:

Because a, = 0, we have x = 81 and power = 662 mod 645 = 4356 mod 645 = 486;

Because a5 = 0, we have x = 81 and power = 486% mod 645 = 236,196 mod 645 = 126;

Because ag = 0, we have x = 81 and power = 126 mod 645 = 15,876 mod 645 = 396;

mod 645 = 81;

Because aq = 1. we find that x = (471 - 111) mod 645 = 36.

.
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Primes

» A positive integer p greater than 1 is called prime if
the only positive factors of p are 1 and p.

» A positive integer that is greater than 1 and is not
prime is called

» The fundamental theorem of arithmetic:

» Every positive integer can be written as
the , Where the prime factors are
written in order of increasing size.

35

OOOOOO



Primes

15= 3'5
48 = 2:2:2-2:3 = 243
17 = 17

100=  2:2:5'5 = 2252

512=  2:2:2:2:2:2:2:2:2=29
515= 5103

28=  2:2:7=227

36




Primes

»This Is easy to see: If n Is a composite integer, It
must have two divisors p, and p, such that p,-p, = n
and p, > 2 and p, > 2.

»p, and p, cannot both be greater than /n, because
then p,-p, would be greater than n.

»If the smaller number of p, and p, Is not a prime
itself, then it can be broken up into prime factors

that are smaller than itself but > 2.

37
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Greatest Common Divisors

»Let a and b be integers, not both zero.
»The largest integer d suchthatd |aandd | b is
called the of a and b.

» The greatest common divisor of a and b is denoted
by

> What is gcd(48, 72) ?

» The positive common divisors of 48 and 72 are
1,2,3,4,6, 8, 12, 16, and 24, so gcd(48, 72) = 24.
> What is gcd(19, 72) ?

» The only positive common divisor of 19 and 72 Is
1, so gcd(19, 72) = 1.

38
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Greatest Common Divisors

>

ra=p2 pP2... P, b=pLP pL2... poa,
»where p,; <p,<...<p,anda, b, e Nforl1<i<n

»gcd(a, 3) - plmin(al, bl) pzmin(az, b2) pnmin(an, bn)
>

a=60= 223151

b=54= 213350

gcd(a,b)= 213150 =6

39
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Relatively Prime Integers

>

»Two Integers a and b are If
gcd(a, b) = 1.

>

»Are 15 and 28 relatively prime?

>

»Are 55 and 28 relatively prime?

>

»Are 35 and 28 relatively prime?
»NoO, gcd(35, 28) = 7.

40




Relatively Prime Integers

>

»The integers a,, a,, ..., a, are
if gcd(a;, ) =1 whenever 1 <i<j<n.

>

»Are 15, 17, and 27 pairwise relatively prime?
»No, because gcd(15, 27) = 3.

»Are 15, 17, and 28 pairwise relatively prime?

>

41




Least Common Multiples

>

»The of the positive integers

a and b is the smallest positive integer that Is
divisible by both a and b.

»We denote the least common multiple of a and b by
lcm(a, b).

>

cm(3,7)= 21
cm(4,6)= 12
cm(5,10)= 10

42
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Least Common Multiples

>

ra=p2 pP2... P, b=pLP pL2... poa,
»where p,; <p,<...<p,anda, b, e Nforl1<i<n

»Icm(a, C)) — plmax(al, b,) pzmax(az, b)) pnmax(an, b))
>

a=60= 22315

b=54= 213350

lcm(a, b) = 22335 =4012705 = 540
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GCD and LCM

ged(a, b) = 6

lcm(a, b) = 223351 =540

Theorem: ab = ged(a,0) - lern(a,b)

44




The Euclidean Algorithm

»The finds the
of two integers a and b.

» For example, if we want to find gcd(287, 91), we
287 (the larger number) by 91 (the smaller

one):

»287 = 91.3 + 14
— 287-91.3 =14
— 287 + 91.(-3) = 14

»We know that for integers a, b and c,

» Therefore, any divisor of 91 is also a divisor of
91.(-3). Ny
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The Euclidean Algorithm
287 + 91-(-3) = 14

»We also know that for integers a, b and c,

>

» Therefore, any divisor of 287 and 91 must also be a
divisor of 287 + 91-(-3), which is 14.

» Consequently, the greatest common divisor of

must be the same as the greatest common
divisor of '

»gcd(287, 91) = gcd(14, 91).

46
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The Euclidean Algorithm

»In the next step, we divide 91 by 14:
»91 =146 +7

» This means that gcd(14, 91) = gcd(14, 7).
»So we divide 14 by 7:

»14=72+0
»We find that 7 | 14, and thus gcd(14, 7) = 7.

>

»So we have this Lemma:

>

47




The Euclidean Algorithm

>IN , the algorithm can be implemented
as follows:

»procedure gcd(a, b: positive integers)
»X = a

»y =D
»whiley #0
»begin

> r:=xmody
> X =Yy

> Y=t

»end

48
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GCDs as Linear Combinations

> . If a and b are positive integers,
then there exist integers s and t such that

gcd(a,b) = sa + tb.

»s and t are called and the
above equation is called

»We will see two methods to find the Bézout’s identity
of two integers.

1. Working backward through the divisions of the
Euclidean algorithm.

2. Extended Euclidean algorithm

49
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GCDs as Linear Combinations

»To run this extended Euclidean algorithm, we sets, = 1
, 51 =0,t; =0,and t; = 1 and let

Sj = Sj_2 — qj—lsj—l and tj = tj—2 — qj—ltj—l
» for j = 2,3,...,n, where the g; are the quotients in the

divisions used when the Euclidean algorithm finds
gcd(a, b).

50
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GCDs as Linear Combinations

» Example for first method:

Express gcd(252, 198) = 18 as a linear combination of 252 and 198 by working backwards
through the steps of the Euclidean algorithm.

Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses these divisions:

252=198 -1+ 54
198 =54 -3 4+ 36
54=36-1+18
36=18-2+0.
We summarize these steps in tabular form:
J| 1 T i T
0] 252 198 I 54
1| 198 54 36
2
3

3
54 36 1 18
36 18 2 0

Using the next-to-last division (the third division), we can express gcd(252, 198) = I8 as alinear
combination of 54 and 36. We find that

18=54—-1-36. 51
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GCDs as Linear Combinations

The second division tells us that

36 =198 — 3 .- 54.

Substituting this expression for 36 into the previous equation, we can express 18 as a linear
combination of 54 and 198. We have

18=54—-1-36=54—-1-(198—=3-54)=4-54—-1-198.
The first division tells us that

54 =252 —-1-198.

Substituting this expression for 54 into the previous equation, we can express 18 as a linear
combination of 252 and 198. We conclude that

18=4-(252—1-198)—1-198=4.252 -5 198,

completing the solution.

52
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GCDs as Linear Combinations

» Example for second method:

Express gcd(252, 198) = 18 as a linear combination of 252 and 198 using the extended Eu-
clidean algorithm.

Solution: Example 17 displays the steps the Euclidean algorithm uses to find gcd(252, 198) =
18. The quotients are g; = 1, ¢, = 3, g3 = 1, and g, = 2. The desired Bézout coefficients are the
values of s, and 7, generated by the extended Euclidean algorithm, where s, = 1,5, = 0,7, = 0,
andf; = I, and

§i=Si2= 4151 and =1, — g0

forj = 2, 3, 4. We find that

Because s, =4 and 1, = -5, we see that 18 = ged(252, 198) =4 -252 -5 - 198.

.
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GCDs as Linear Combinations

We summarize the steps of the extended Euclidean algorithm in a table:

J | n Tiw G T S
0252 198 1 54 1 0
11198 54 3 36 0 1
21 54 36 1 18 1 -1
31 36 18 2 0 -3 4
4 4 -5

UMASS
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GCDs as Linear Combinations

If a, b, and ¢ are positive integers such

that gcd(a, b) = 1 and albc, then a|c.

gcd(a,b) =1 = 3s,t(sa+th=1) > sac+thc=c
We have a|bc = al|tbc and we know that a|sac.

So we have al|sac + tbc = alc

55
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GCDs as Linear Combinations

If p Is a prime and p|a,a, -+ a,,, where

each a; I1s an integer, then p|a; for some i.

By induction. (will be covered in the next

sessions)

56
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GCDs as Linear Combinations

Let m be a positive integer and let a, b,
and c be integers. If ac = bc (mod m) and

gcd(c,m) =1,then a = b (modm).

ac = bc (mod m) = m|ac — bc = c(a — b)
Because gcd(c,m) = 1, based on the previous
lemma, we have m|la — b = a = b (mod m)

o7
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Now it’s Time for...
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Induction

» The principle of mathematical induction is a useful

tool for that a certain predicate is true for all
natural numbers.

» |t cannot be used to discover theorems, but only to
prove them.

» To prove that propositional function P(n) is true for
all positive integers n, we complete two steps:

1. . Verify P(1) (or P(0)) Is true.
2. : Show that the conditional

statement P(k) —» P(k + 1) is true for all
positive integers k.

59
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Induction

> . Show that n < 2™ for all positive integers n.
»Let P(n) be the proposition "n < 2™,
1. Show that P(1) is true.
P(1) is true, because 1 < 2!
2. Show that if P(n) Is true, then P(n + 1) is true

Assume that n < 2" Is true. We need to show that
P(n+ 1)istrue,i.e.n+ 1 < 2™,

WestartfromP(n):n<2"=>n+1<2"4+1<2"
+2n — 2n+1

Therefor, if n < 2™, thenn + 1 < 2n*1

So n < 2" Is true for any positive integer.

.
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Induction

n(n+1)
2

> 142+ 4+n=3" 0=

1. Show that P(1) is true.

P(1) is true, because 1 = 1;2

2. Show that if P(n) Is true, then P(n + 1) is true

nn+ 1)
1+2+-+n= >1+2+-+n+m+1)

2
nn+1) n
== +@pyn=(n+LW§+1)

_(m+DM+2) (m+D((n+1)+1)
a 2 a 2

So P(n) Is true for any positive integer.

.
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