
We will cover these parts of the 

book (8th edition):

5.2.1-5.2.3

5.3.1-5.3.3 (up to page 371)

5.4.1-5.4.3

6.1, 6.2
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Strong Induction(Second principle)

▸ There is another proof technique that is very similar to

the principle of mathematical induction. It is called the

second principle of mathematical induction. It can be

used to prove that a propositional function 𝑃(𝑛) is true

for any natural number 𝑛.

▸ We should complete two steps:

1. Basis step: Verify 𝑃(1) (or 𝑃(0)) is true.

2. Inductive step: Show that the conditional 

statement [𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃 𝑘 ] → 𝑃(𝑘 + 1)
is true for all positive integers 𝑘.
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Strong Induction(Second principle)

▸Example: Show that every integer greater than 1 can be 

written as the product of primes.

1.Show that 𝑃(2) is true.

P(2) is true, because 2 is the product of one prime: itself

2.Show that if 𝑃 2 , 𝑃 3 ,… , 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is 

true

Two possible cases: 

1. (𝑛 + 1) is prime. So 𝑃(𝑛 + 1) is true.

2. (𝑛 + 1) is composite that can be written as the 

product of two integers 𝑎 and 𝑏, 2 ≤ 𝑎 ≤ 𝑏 < 𝑛 + 1.  

So by the induction hypothesis, both 𝑎 and 𝑏 can be 

written as the product of primes. So 𝑛 + 1 = 𝑎 ∗ 𝑏
can be written as the product of primes.
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Recursive Definition

▸ Recursion is a principle closely related to mathematical 

induction.

▸ In a recursive definition, an object is defined in terms of 

itself.

▸ We can recursively define sequences, functions and sets.

▸ Example: The sequence 𝑎𝑛 of powers of 2 is given by 𝑎𝑛
= 2𝑛 for 𝑛 = 0,1,2,… .

▸ The same sequence can also be defined recursively:

▸ 𝑎0 = 1

▸ 𝑎𝑛+1 = 2𝑎𝑛 for 𝑛 = 1,2,…

▸ Obviously, induction and recursion are similar principles.

4



Recursively Defined Functions

▸ We use two steps to define a function with the set 

of nonnegative integers as its domain:

1. Basis step: Specify the value of the function at 

zero.

2. Recursive step: Give a rule for finding its 

value at an integer from its values at smaller 

integers.

▸ Such a definition is called a recursive or 

inductive definition.
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Recursively Defined Functions

▸ Example: Find 𝑓(1), 𝑓(2), 𝑓(3), and 𝑓(4) if 𝑓 0
= 3 and 𝑓 𝑛 + 1 = 2𝑓 𝑛 + 3.

▸ 𝑓 1 = 2𝑓 0 + 3 = 9

▸ 𝑓 2 = 2𝑓 1 + 3 = 21

▸ 𝑓 3 = 2𝑓 2 + 3 = 45

▸ 𝑓 4 = 2𝑓 3 + 3 = 93

▸ How can we define the factorial 𝑓 𝑛 = 𝑛!

▸ Remember 𝑓 0 = 1

▸ 𝑓 𝑛 + 1 =?
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Recursively Defined Functions

▸ 𝑓 1 = 1𝑓 0 = 1

▸ 𝑓 2 = 2𝑓 1 = 2

▸ 𝑓 3 = 3𝑓 2 = 6

▸ 𝑓 4 = 4𝑓 3 = 24

▸ So we can say

▸ 𝑓 𝑛 + 1 = 𝑛 + 1 𝑓 𝑛

▸ 𝑓 0 = 1
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Recursively Defined Sets

▸ Like functions, we have two steps:

1. Basis step: An initial collection of elements is 

specified(boundary conditions).

2. Recursive step: Rules for construction of 

additional elements from elements in the set.
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Recursively Defined Sets

▸ Example: Let 𝑆 recursively defined by:

▸ 3 ∈ 𝑆

▸ 𝑥 + 𝑦 ∈ 𝑆 if x ∈ 𝑆 and y ∈ 𝑆

▸ Find some elements of 𝑆.

▸ 3 ∈ 𝑆 ⇒ 6 ∈ 𝑆

▸ 3,6 ∈ 𝑆 ⇒ 9 ∈ 𝑆

▸ 3,6,9 ∈ 𝑆 ⇒ 12,15 ∈ 𝑆

▸ So it seems 𝑆 is the set of positive integers 

divisible by 3.
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Recursively Defined Sets

▸ Proof:

▸ Let A be the set of all positive integers divisible by 

3. To show that A = S, we must show A ⊆ 𝑆 and S
⊆ 𝐴

▸ Part 1. To prove 𝐴 ⊆ 𝑆, we must show that every 

positive integer divisible by 3 is in 𝑆.

▸ We will use mathematical induction to show this. 

Let 𝑃(𝑛) be the statement “3𝑛 ∈ 𝑆”

▸ 𝑃 1 is true because 3 ∈ 𝑆.

▸ Assume 𝑃(𝑛) is true. So 3𝑛 ∈ 𝑆. And we know 3 ∈ 𝑆
⇒ 3𝑛 + 3 ∈ 𝑆 ⇒ 3 𝑛 + 1 ∈ 𝑆 ⇒ 𝑃(𝑛 + 1) is true.

▸ So 𝐴 ⊆ 𝑆
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Recursively Defined Sets

▸ Part 2. To prove 𝑆 ⊆ 𝐴, must show ∀𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴

▸ Basis step: All initial elements of 𝑆 are in 𝐴.     

3 ∈ 𝐴

▸ Inductive step: To show 𝑥 + 𝑦 ∈ A whenever 

𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆 are in 𝐴.

▸ 𝑥, 𝑦 ∈ 𝑆 ⇒ 3|𝑥 and 3|𝑦, so 3| 𝑥 + 𝑦 ⇒ 𝑥 + 𝑦
∈ 𝐴

▸ So 𝑆 ⊆ 𝐴

▸ Overall conclusion: 𝐴 = 𝑆

▸ This form of induction, is called Structural 

Induction. 11



Recursively Defined Sets

▸Definition I: The set σ
∗

of strings over the 

alphabet σ is defined recursively by:

▸Basis step: 𝜆 ∈ σ ∗
(where 𝜆 is the empty string 

containing no symbols)

▸Recursive step: If 𝑤 ∈ σ ∗
and 𝑥 ∈ σ , then 𝑤𝑥

∈ σ ∗
.
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Recursively Defined Sets

▸Definition II: Two strings can be combined via the 

operation of concatenation. Let σ be a set of 

symbols and σ ∗
the set of strings formed from 

symbols in σ . We can define the concatenation of 

two strings, denoted by ⋅, recursively as follows:

▸Basis step: If w ∈ σ ∗
, then 𝑤. 𝜆 = 𝑤, where 𝜆 is 

the empty string

▸Recursive step: If 𝑤1 ∈ σ ∗
and 𝑤2 ∈ σ ∗

and 𝑥
∈ σ , then w1. 𝑤2𝑥 = 𝑤1. 𝑤2 𝑥.
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Recursively Defined Sets

▸Another example: The well-formed formulas of variables, 

numerals and operators from {+,−,∗,/, ^} are defined by:

▸𝑥 is a well-formed formula if 𝑥 is a numeral or variable.

▸ 𝑓 + 𝑔 , 𝑓 − 𝑔 , 𝑓 ∗ 𝑔 , 𝑓/𝑔 , (𝑓^𝑔) are well-formed 

formulas if 𝑓 and 𝑔 are.

▸Find some elements of 𝑆.

▸For example:

▸ 𝑥 − 𝑦

▸((𝑧/3) − 𝑦)

▸( 𝑧/3 − (6 + 5))
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Recursive Algorithms

▸ An algorithm is called recursive if it solves a 

problem by reducing it to an instance of the same 

problem with smaller input.

▸ Example1: Recursive Euclidean Algorithm

▸procedure gcd(a, b: positive integers 𝑎 < 𝑏)
▸if 𝑎 == 0 then

▸result = b
▸else

▸result = gcd(b mod a, a)
▸endif
▸return result {result is gcd(a, b)}
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Recursive Algorithms

▸ The Fibonacci sequence:

▸ 𝑓 0 = 1

▸ 𝑓 1 = 1

▸ 𝑓 𝑛 = 𝑓 𝑛 − 1 + 𝑓 𝑛 − 2

▸ 𝑓 0 = 1

▸ 𝑓 1 = 1

▸ 𝑓 2 = 2

▸ 𝑓 3 = 3

▸ 𝑓 4 = 5

▸ 𝑓 5 = 8
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Recursive Algorithms

▸ Example2: Recursive Fibonacci Algorithm

▸procedure fibo(n: positive integer)

▸if (𝑛 == 0) then

▸result = 1

▸else if (𝑛 == 1) then

▸result = 1

▸else
▸result = fibo(n-1) + fibo(n-2)

▸endif

▸return result {result is fibo(n)}
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Recursive Algorithms

▸ Example2: Recursive Fibonacci Algorithm

▸ Exponential Complexity!
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Recursive Algorithms

▸ Linear Complexity:

▸procedure iterative-fibo(n: positive integer)

▸if (𝑛 == 0) then

▸y = 0

▸else
▸𝑥 = 0, 𝑦 = 1
▸for i = 1 to n-1 do

▸z = x + y

▸x = y

▸y = z

▸endfor

▸endif

▸return y {y is fibo(n)}
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Recursive Algorithms

▸ For every recursive algorithm, there is an 

equivalent iterative algorithm.

▸ Recursive algorithms are often shorter, 

more elegant, and easier to understand than 

their iterative counterparts.

▸ However, iterative algorithms are usually 

more efficient in their use of space and 

time.
20



Recursive Algorithms

▸ Example3: Recursive Algorithm for 𝑎𝑛

▸procedure power(a: positive real number, n: 

positive integer)

▸if (𝑛 == 0) then

▸result = 1

▸else
▸result = a*power(a, n-1)

▸endif

▸return result {result is 𝑎𝑛}
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Recursive Algorithms

▸ Example3: Recursive Algorithm for 𝑎𝑛

▸ Proof: We use mathematical induction on n

▸ Basis step: 𝑝𝑜𝑤𝑒𝑟(𝑎, 0) = 1. It’s correct 

because 𝑎0 = 1

▸ Inductive step: Suppose 𝑝𝑜𝑤𝑒𝑟 𝑎, 𝑘 = 𝑎𝑘.  

The algorithm computes 𝑝𝑜𝑤𝑒𝑟 𝑎, 𝑘 + 1 = 𝑎
∗ 𝑝𝑜𝑤𝑒𝑟(𝑎, 𝑘) = 𝑎 ∗ 𝑎𝑘 = 𝑎𝑘+1 which is correct

▸ Generally, we need to use strong induction to 

prove that recursive algorithms are correct
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Now let us do some…

▸Counting
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Basic Counting Principles

▸Counting problems are of the following kind:

▸“How many different 8-letter passwords are there?”

▸“How many possible ways are there to pick 11 

soccer players out of a 20-player team?”

▸Most importantly, counting is the basis for 

computing probabilities of discrete events.

▸(“What is the probability of winning the lottery?”) 
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Basic Counting Principles

▸The product rule:

▸Suppose that a procedure can be broken down into 

two successive tasks. If there are n1 ways to do the 

first task and n2 ways to do the second task after the 

first task has been done, then there are n1n2 ways to 

do the procedure.

▸Generalized product rule:

▸If we have a procedure consisting of sequential 

tasks T1, T2, …, Tm that can be done in n1, n2, …, nm

ways, respectively, then there are n1  n2  …  nm

ways to carry out the procedure.
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Basic Counting Principles

▸Example1:

▸How many different license plates are there that 
contain exactly three English letters ?

▸Solution:

▸There are 26 possibilities to pick the first letter, then 
26 possibilities for the second one, and 26 for the 
last one. 

▸So there are 262626 = 17576 different license 
plates.
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Basic Counting Principles

▸Example2:

▸ A new company with just two employees, Sanchez 

and Patel, rents a floor of a building with 12 

offices. How many ways are there to assign 

different offices to these two employees?

▸Solution:

▸There are 12 offices for the first one to choose. 
When he chose his office, the number of remaining 
offices to be chosen is 11. So the answer is 
12∙11=132
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Basic Counting Principles

▸ Example3: The chairs of an auditorium are to be labeled 

with an uppercase English letter followed by a positive 

integer not exceeding 100. What is the largest number of 

chairs that can be labeled differently? 

▸ Example4: There are 32 computers in a data center in the 

cloud. Each of these computers has 24 ports. How many 

different computer ports are there in this data center? 

▸ Example5: How many different bit strings of length seven 

are there?

▸ Example6: Use the product rule to show that the number 

of different subsets of a finite set 𝑆 is 2 𝑆 . 

▸ There are 2|𝑆| bit strings of length |𝑆|. 28

26 ∗ 100 = 2600

24 ∗ 32 = 768

27 = 128



Basic Counting Principles

▸The sum rule:
▸If a task can be done in n1 ways and a second task 
in n2 ways, and if these two tasks cannot be done at 
the same time, then there are n1 + n2 ways to do 
either task.

▸Generalized sum rule:

▸If we have tasks T1, T2, …, Tm that can be done in 

n1, n2, …, nm ways, respectively, and no two of  

these tasks can be done at the same time, then 

there are n1 + n2 + … + nm ways to do one of 

these tasks.
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Basic Counting Principles

▸Example1:

▸The department will award a free computer to either a CS 

student or a CS professor. How many different choices are 

there, if there are 530 students and 15 professors?

▸Example2: 

▸A student can choose a computer project from one of three 

lists. The three lists contain 23, 15, and 19 possible projects, 

respectively. No project is on more than one list. How many 

possible projects are there to choose from? 

30

There are 530 + 15 = 545 choices.

23+15+19=57



Basic Counting Principles

▸The sum and product rules can also be phrased in 

terms of set theory.

▸Sum rule: Let A1, A2, …, Am be disjoint sets. Then 

the number of ways to choose any element from one 

of these sets is |A1  A2  …  Am | =

|A1| + |A2| + … + |Am|.

▸Product rule: Let A1, A2, …, Am be finite sets. Then 

the number of ways to choose one element from 

each set in the order A1, A2, …, Am is 

|A1  A2  …  Am | = |A1|  |A2|  …  |Am|.
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Basic Counting Principles

▸More complex example:

▸Each user on a computer system has a password, which is 

six to eight characters long, where each character is an 

uppercase letter or a digit. Each password must contain at 

least one digit. How many possible passwords are there?

▸Solution: 

▸Let 𝑃 be the total number of possible passwords, and let 𝑃6,
𝑃7, and 𝑃8 denote the number of possible passwords of 

length 6, 7, and 8, respectively. By the sum rule, 𝑃 = 𝑃6 + 𝑃7
+ 𝑃8. We will now find 𝑃6, 𝑃7, and 𝑃8. Finding 𝑃6 directly is 

difficult. To find 𝑃6 it is easier to find the number of strings 

of uppercase letters and digits that are six characters long, 

including those with no digits, and subtract from this the 

number of strings with no digits. 32



Basic Counting Principles

▸By the product rule, the number of strings of six characters 

is 366, and the number of strings with no digits is 266. Hence,

▸𝑃6 = 366 − 266 = 2176782336 − 308915776 = 1867866560

▸𝑃7 = 367 − 267 = 78364164096 − 8031810176

= 70332353920

▸𝑃8 = 368 − 268 = 2821109907456 − 208827064576

= 2612282842880

▸So

▸𝑃 = 𝑃6 + 𝑃7 + 𝑃8 = 2684483063360
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Basic Counting Principles

▸The subtraction rule:

▸If a task can be done in either 𝑛1 ways or 𝑛2

ways, then the number of ways to do the task is 𝑛1

+ 𝑛2 minus the number of ways to do the task that

are common to the two different ways.

▸ 𝐴1 ∪ 𝐴2 = 𝐴1 + 𝐴2 − |𝐴1 ∩ 𝐴2|
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Inclusion-Exclusion (The Subtraction Rule)

▸Example1: How many bit strings of length 8 either 

start with a 1 or end with 00?

▸Task 1: Construct a string of length 8 that starts with 

a 1.

▸There is one way to pick the first bit (1), 

▸two ways to pick the second bit (0 or 1),

▸two ways to pick the third bit (0 or 1),
▸.
▸.
▸.
▸two ways to pick the eighth bit (0 or 1).

▸Product rule: Task 1 can be done in 127 = 128 
ways.
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Inclusion-Exclusion (The Subtraction Rule)

▸Task 2: Construct a string of length 8 that ends with 

00.

▸There are two ways to pick the first bit (0 or 1), 

▸two ways to pick the second bit (0 or 1),
▸.
▸.
▸.
▸two ways to pick the sixth bit (0 or 1),

▸one way to pick the seventh bit (0), and

▸one way to pick the eighth bit (0).

▸Product rule: Task 2 can be done in 26 = 64 ways.
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Inclusion-Exclusion (The Subtraction Rule)

▸Since there are 128 ways to do Task 1 and 64 ways 

to do Task 2, does this mean that there are 192 bit 

strings either starting with 1 or ending with 00 ?

▸No, because here Task 1 and Task 2 can be done at 

the same time.

▸When we carry out Task 1 and create strings starting 

with 1, some of these strings end with 00.

▸Therefore, we sometimes do Tasks 1 and 2 at the 

same time, so the sum rule does not apply.

37



Inclusion-Exclusion (The Subtraction Rule)

▸If we want to use the sum rule in such a case, we 
have to subtract the cases when Tasks 1 and 2 are 
done at the same time.

▸How many cases are there, that is, how many strings 
start with 1 and end with 00?

▸There is one way to pick the first bit (1), 
▸two ways for the second, …, sixth bit (0 or 1),
▸one way for the seventh, eighth bit (0).

▸Product rule: In 25 = 32 cases, Tasks 1 and 2 are 
carried out at the same time.
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Inclusion-Exclusion (The Subtraction Rule)

▸Since there are 128 ways to complete Task 1 and 64 

ways to complete Task 2, and in 32 of these cases 

Tasks 1 and 2 are completed at the same time, there 

are

▸128 + 64 – 32 = 160 ways to do either task.

▸In set theory, this corresponds to sets A1 and A2 that 

are not disjoint. Then we have:

▸|A1  A2| = |A1| + |A2| - |A1  A2|

▸This is called the principle of inclusion-exclusion.
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Inclusion-Exclusion (The Subtraction Rule)

▸ Example2: A computer company receives 350 applications 

from college graduates for a job planning a line of new web 

servers. Suppose that 220 of these applicants majored in 

computer science, 147 majored in business, and 51 majored 

both in computer science and in business. How many of  

these applicants majored neither in computer science nor in 

business?

▸ Solution:

▸ 𝐴1 ∪ 𝐴2 = 𝑈 − 𝐴1 ∪ 𝐴2 =

𝑈 − 𝐴1 + 𝐴2 − 𝐴1 ∩ 𝐴2
= 350 − 220 + 147 − 51 = 34
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Basic Counting Principles

▸The division rule:

▸There are Τ𝑛 𝑑 ways to do a task if it can be done 
using a procedure that can be carried out in 𝑛 ways, 
and for every way 𝑤, exactly 𝑑 of the 𝑛 ways 
correspond to way 𝑤.

▸The division rule comes in handy when it appears 
that a task can be done in 𝑛 different ways, but it 
turns out that for each way of doing the task, there 
are 𝑑 equivalent ways of doing it. Under these 
circumstances, we can conclude that there are    
Τ𝑛 𝑑 inequivalent ways of doing the task.
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Basic Counting Principles

▸The division rule:

▸Example1: Suppose that an automated system has been 
developed that counts the legs of cows in a pasture. 
Suppose that this system has determined that in a farmer’s 
pasture there are exactly 572 legs. How many cows are 
there is this pasture, assuming that each cow has four legs 
and that there are no other animals present?

▸Example2: How many different ways are there to seat four 
people around a circular table, where two seatings are 
considered the same when each person has the same left 
neighbor and the same right neighbor?

▸Solution: We arbitrarily select a seat at the table and label
it seat 1. We number the rest of the seats in numerical 
order, proceeding clockwise around the table. 42

572/4=143



Basic Counting Principles

▸The division rule:

▸Note that are four ways to select the person for seat 1, 
three ways to select the person for seat 2, two ways to select 
the person for seat 3, and one way to select the person for 
seat 4. Thus, there are 4! = 24 ways to order the given four 
people for these seats. However, each of the four choices for 
seat 1 leads to the same arrangement. Because there are 
four ways to choose the person for seat 1, by the division 
rule there are 24∕4 = 6 different seating arrangements of four 
people around the circular table.
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Tree Diagrams

▸ Counting problems can be solved using tree 

diagrams. 

▸ A tree consists of a root, a number of branches

leaving the root, and possible additional branches 

leaving the endpoints of other branches.

▸ To use trees in counting, we use a branch to 

represent each possible choice. 

▸ We represent the possible outcomes by the 

leaves, which are the endpoints of branches 

not having other branches starting at them.
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Tree Diagrams

▸Example1: How many bit strings of length four do 

not have two consecutive 1s?

▸ Task 1 Task 2 Task 3 Task 4

(1st bit) (2nd bit) (3rd bit) (4th bit)

45

0

0

0
0

1
1

0

1 0 0

1

1 0

0 0

1
1

0
There are 8 strings.



Tree Diagrams

▸ Example2: Suppose that “I Love Boston” T-shirts

come in five different sizes: S, M, L, XL, and XXL.

Further suppose that each size comes in four colors,

white, red, green, and black, except for XL, which

comes only in red, green, and black, and XXL, which

comes only in green and black. How many different

shirts does a souvenir shop have to stock to have at

least one of each available size and color of the T-

shirt?

17 different 

T-shirts



The Pigeonhole Principle

▸The pigeonhole principle: If (k + 1) or more objects 

are placed into k boxes, then there is at least one box 

containing two or more of the objects.

▸Example 1: If there are 11 players in a soccer team 

that wins 12-0, there must be at least one player in  

the team who scored at least twice (assuming there 

are no own goals!).

▸Example 2: If you have 6 classes from Monday to 

Friday, there must be at least one day on which      

you have at least two classes.
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The Pigeonhole Principle

▸Example 3: Assume you have a drawer containing a random 

distribution of a dozen brown socks and a dozen black socks. It 

is dark, so how many socks do you have to pick to be sure that 

among them there is a matching pair?

▸There are two types of socks, so if you pick at least  3 socks, 

there must be either at least two brown  socks or at least two 

black socks.

▸Generalized pigeonhole principle: 3/2 = 2.

▸In general, if 𝑁 objects are placed into 𝑘 boxes, then there     

is at least one box containing at least 𝑁/𝐾 objects (can 

be easily shown by contradiction).
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The Pigeonhole Principle

▸Example 4: During a month with 30 days, a

baseball team plays at least one game a day, but no

more than 45 games. Show that there must be a

period of some number of consecutive days during

which the team must play exactly 14 games in that

period.

▸Solution: Let 𝑎𝑗 be the number of games played 

on or before the 𝑗th day of the month. Then 

𝑎1, 𝑎2, … , 𝑎30 is an increasing sequence of 

distinct positive integers, with 1 ≤ 𝑎𝑗 ≤ 45. 
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The Pigeonhole Principle

▸ Moreover, 𝑎1 + 14, 𝑎2 + 14,… , 𝑎30 + 14 is also an 

increasing sequence of distinct positive integers, 

with 15 ≤ 𝑎𝑗 + 14 ≤ 59. The 60 positive integers 

𝑎1, 𝑎2, … , 𝑎30, 𝑎1 + 14, 𝑎2 + 14,… , 𝑎30 + 14 are all 

less than or equal to 59. 

▸ Hence, by the pigeonhole principle two of these 

integers are equal. Because the integers 𝑎𝑗 , 𝑗

= 1, 2,… , 30 are all distinct and the integers 𝑎𝑗
+ 14, 𝑗 = 1, 2, … , 30 are all distinct, there must 

be indices 𝑖 and 𝑗 with 𝑎𝑖 = 𝑎𝑗 + 14. This 

means that exactly 14 games were             

played from day 𝑗 + 1 to day 𝑖. 50


