
We will cover these parts of the 

book (8th edition):

6.3-6.4

7.1

7.2.1-7.2.7

7.4.1-7.4.4

7.4.6
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Permutations and Combinations

▸How many different sets of 3 people can we pick 
from a group of 6?

▸There are 6 choices for the first person, 5 for the 
second one, and 4 for the third one, so there are
654 = 120 ways to do this.

▸This is not the correct result!

▸For example, picking person C, then person A, and 
then person E leads to the same group as first 
picking E, then C, and then A.

▸However, these cases are counted separately in  
the above equation.
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Permutations and Combinations

▸So how can we compute how many different subsets 
of people can be picked (that is, we want to disregard 
the order of picking) ?

▸To find out about this, we need to look at 
permutations.

▸A permutation of a set of distinct objects is an 
ordered arrangement of these objects.

▸An ordered arrangement of r elements of a set is 
called an r-permutation.
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Permutations and Combinations

▸Example: Let S = {1, 2, 3}.

▸The arrangement 3, 1, 2 is a permutation of S.

▸The arrangement 3, 2 is a 2-permutation of S.

▸The number of r-permutations of a set with n distinct 

elements is denoted by P(n, r).

▸We can calculate P(n, r) with the product rule:

▸P(n, r) = n(n – 1)(n – 2) …(n – r + 1).

▸(n choices for the first element, (n – 1) for the  

second one, (n – 2) for the third one…)
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Permutations and Combinations

▸Example:

▸P(8, 3) = 876 = 336

▸ = (87654321)/(54321)

▸General formula:

▸𝑃(𝑛, 𝑟) =
𝑛!

(𝑛–𝑟)!

▸Knowing this, we can return to our initial question:

▸How many different sets of 3 people can we pick 

from a group of 6?
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Permutations and Combinations

▸An r-combination of elements of a set is an 
unordered selection of r elements from the set.
▸Thus, an r-combination is simply a subset of the set 
with r elements.

▸Example: Let S = {1, 2, 3, 4}.
▸Then {1, 3, 4} is a 3-combination from S.

▸The number of r-combinations of a set with n   
distinct elements is denoted by C(n, r).

▸Example: C(4, 2) = 6, since, for example, the 2-
combinations of a set {1, 2, 3, 4} are {1, 2}, {1, 3}, 
{1, 4}, {2, 3}, {2, 4}, {3, 4}.
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Permutations and Combinations

▸How can we calculate C(n, r)?

▸Consider that we can obtain the r-permutations of a 
set in the following way:

▸First, we form all the r-combinations of the set
(there are C(n, r) such r-combinations).

▸Then, we generate all possible orderings within  
each of these r-combinations (there are P(r, r)       
such orderings in each case).

▸Therefore, we have:

▸P(n, r) = C(n, r)P(r, r)
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Permutations and Combinations

▸𝐶(𝑛, 𝑟) =
𝑃 𝑛,𝑟

𝑃 𝑟,𝑟
=

𝑛!

𝑛 – 𝑟 !
𝑟!

𝑟 – 𝑟 !

=
𝑛!

𝑟! 𝑛–𝑟 !

▸Now we can answer our initial question:

▸How many ways are there to pick a set of 3 people 

from a group of 6 (disregarding the order of picking)?

▸C(6, 3) = 6!/(3!3!) = 720/(66) = 720/36 = 20

▸There are 20 different ways, that is, 20 different 

groups to be picked.
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Permutations and Combinations

▸Corollary:

▸Let n and r be nonnegative integers with r  n.

▸Then C(n, r) = C(n, n – r).

▸Note that “picking a group of r people from a group    

of n people” is the same as “splitting a group of n 

people into a group of r people and another group       

of (n – r) people”. 
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Combinations

▸Proof:
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This symmetry is intuitively plausible. For example, let us 

consider a set containing six elements (n = 6).

Picking two elements and leaving four is essentially the 

same as picking four elements and leaving two.

In either case, our number of choices is the number of 

possibilities to divide the set into one set containing two 

elements and another set containing four elements.



Permutations and Combinations

▸Example:

▸A soccer club has 8 female and 7 male members. 

For today’s match, the coach wants to have 6 female 

and 5 male players on the grass. How many possible 

configurations are there?

▸C(8, 6)  C(7, 5) = 8!/(6!2!)  7!/(5!2!)

▸ = 2821 

▸ = 588
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Binomial Coefficients

▸Expressions of the form 𝐶 𝑛, 𝑘 =
𝑛
𝑘

are also 

called binomial coefficients.

▸How come?

▸A binomial expression is the sum of two terms, 
such as (a + b).

▸Now consider (a + b)2 = (a + b)(a + b).

▸When expanding such expressions, we have to 
form all possible products of a term in the first factor 
and a term in the second factor:

▸(a + b)2 = a·a + a·b + b·a + b·b

▸Then we can sum identical terms:

▸(a + b)2 = a2 + 2ab + b2
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Binomial Coefficients

▸For (a + b)3 = (a + b)(a + b)(a + b) we have

▸(a + b)3 = aaa + aab + aba + abb + baa + bab + bba + 

bbb

▸(a + b)3 = a3 + 3a2b + 3ab2 + b3

▸There is only one term a3, because there is only one 

possibility to form it: Choose a from all three factors: 

C(3, 3) = 1.

▸There is three times the term a2b, because there  

are three possibilities to choose a from a subset

of two out of the three factors: C(3, 2) = 3.

▸Similarly, there is three times the term ab2

(C(3, 1) = 3) and once the term b3 (C(3, 0) = 1).
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Binomial Coefficients

▸This leads us to the following formula:

▸ 𝑥 + 𝑦 𝑛 = σ𝑗=0
𝑛 𝑛

𝑗 𝑥𝑛−𝑗𝑦𝑗

=
𝑛
0

𝑥𝑛 +
𝑛
1

𝑥𝑛−1𝑦 +⋯+
𝑛

𝑛 − 1
𝑥𝑦𝑛−1 +

𝑛
𝑛

𝑦𝑛

▸Proof:

▸The terms in the product when it is expanded are of the form 

𝑥𝑛−𝑗𝑦𝑗 for 𝑗 = 0, 1, 2, … , 𝑛. To count the number of terms of 

the form 𝑥𝑛−𝑗𝑦𝑗, note that to obtain such a term it is 

necessary to choose 𝑛 − 𝑗 xs from the 𝑛 binomial factors 

(so that the other 𝑗 terms in the product are ys). Therefore, 

the coefficient of 𝑥𝑛−𝑗𝑦𝑗 is 
𝑛

𝑛 − 𝑗 , which is equal to 
𝑛
𝑗 .    

This proves the theorem. 14

(Binomial Theorem)



Binomial Coefficients

▸Example1:

▸What is the coefficient of 𝑥12𝑦13 in the expansion of 

𝑥 + 𝑦 25?

▸Solution:

▸From the binomial theorem it follows that this 

coefficient is

▸
25
13

=
25!

13!∗12!
= 5200300
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Binomial Coefficients

▸Example2: Prove σ𝑘=0
𝑛 𝑛

𝑘
= 2𝑛

▸Use Binomial theorem. x=1, y=1

▸Example3: Prove σ𝑘=0
𝑛 −1 𝑘 𝑛

𝑘
= 0

▸x=-1, y=1

▸Example4: Prove σ𝑘=0
𝑛 2𝑘

𝑛
𝑘

= 3𝑛

▸x=1, y=2
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Combinations

▸Pascal’s Identity:

▸Let n and k be positive integers with n  k.

Then C(n + 1, k) = C(n, k – 1) + C(n, k).

▸
𝑛 + 1
𝑘

=
𝑛

𝑘 − 1
+

𝑛
𝑘

▸How can this be explained?

▸What is it good for?
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Combinations

▸Imagine a set S containing n elements and a set T 

containing (n + 1) elements, namely all elements in 

S plus a new element a.

▸Calculating C(n + 1, k) is equivalent to answering 

the question: How many subsets of T containing k 

items are there?

▸Case I: The subset contains (k – 1) elements of S 

plus the element a: C(n, k – 1) choices.

▸Case II: The subset contains k elements of S and 

does not contain a: C(n, k) choices.

▸Sum Rule: C(n + 1, k) = C(n, k – 1) + C(n, k).
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Pascal’s Triangle

▸In Pascal’s triangle, each number is the sum of the 

numbers to its upper left and upper right:
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

… … … … … …

With the help of Pascal’s triangle, 

you can find powers of binomial 

expressions.

For example, the fifth row of 

Pascal’s triangle                                

(1 – 4 – 6 – 4 – 1) helps                    

us to compute (a + b)4:

(a + b)4 = a4 + 4a3b +                   

6a2b2 + 4ab3 + b4



Pascal’s Triangle

▸Since we have C(n + 1, k) = C(n, k – 1) + C(n, k) 
and
C(0, 0) = 1, we can use Pascal’s triangle to simplify 
the computation of C(n, k):
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C(0, 0) = 1

C(1, 0) = 1 C(1, 1) = 1

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1

C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1

C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1

k

n



Some other identities

▸Vandermonde’s: 
𝑚 + 𝑛

𝑟
= σ𝑘=0

𝑟 𝑚
𝑟 − 𝑘

𝑛
𝑘

▸
2𝑛
𝑛

= σ𝑘=0
𝑛 𝑛

𝑘

2

▸
𝑛 + 1
𝑟 + 1

= σ𝑗=𝑟
𝑛 𝑗

𝑟
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Now it’s time to look at…

22

Discrete Probability



Discrete Probability

▸Everything you have learned about counting 

constitutes the basis for computing the probability

of events to happen.

▸In the following, we will use the notion experiment

for a procedure that yields one of a given set of 

possible outcomes.

▸This set of possible outcomes is called the sample 

space of the experiment.

▸An event is a subset of the sample space.
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Discrete Probability

▸If all outcomes in the sample space are equally 

likely, the following definition of probability applies:

▸The probability of an event E, which is a subset of a 

finite sample space S of equally likely outcomes, is 

given by 𝑝 𝐸 =
𝐸

|𝑆|
.

▸This is the Laplace’s definition.

▸Probability values range from 0 (for an event that   

will never happen) to 1 (for an event that will always

happen whenever the experiment is carried out).
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Discrete Probability

▸Example I:

▸An urn contains four blue balls and five red balls. 

What is the probability that a ball chosen from the  

urn is blue?

▸Solution:

▸There are nine possible outcomes, and the event 

“blue ball is chosen” comprises four of these 

outcomes. Therefore, the probability of this         

event is 4/9 or approximately 44.44%.
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Discrete Probability

▸Example II:

▸What is the probability of winning the lottery 6/49, 

that is, picking the correct set of six numbers out of 

49?

▸Solution:

▸There are C(49, 6) possible outcomes. Only one of 

these outcomes will actually make us win the lottery.

▸p(E) = 1/C(49, 6) = 1/13,983,816 
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Discrete Probability

▸Example IIl:

▸Find the probability that a hand of five cards in poker 

contains four cards of one kind.

▸Solution:

▸By the product rule, the number of hands of five cards with 

four cards of one kind is the product of the number of ways to 

pick one kind, the number of ways to pick the four of this kind 

out of the four in the deck of this kind, and the number of 

ways to pick the fifth card. This is 𝐶 13,1 𝐶 4,4 𝐶 48,1 .     

And we know there are 𝐶(52,5) different hands of 5 cards. 

So the probability is

▸
𝐶 13,1 𝐶 4,4 𝐶 48,1

C(52,5)
≈ 0.0003
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Complementary Events

▸Let E be an event in a sample space S. The 

probability of an event ത𝐸 = 𝑆 − 𝐸, the 

complementary event of E, is given by

▸p( ത𝐸) = 1 – p(E).

▸This can easily be shown:

▸p( ത𝐸) = (|S| - |E|)/|S| = 1 - |E|/|S| = 1 – p(E).

▸This rule is useful if it is easier to determine the 

probability of the complementary event than the 

probability of the event itself.  
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Complementary Events

▸Example I: A sequence of 10 bits is randomly 

generated. What is the probability that at least one of 

these bits is zero?

▸Solution: There are 210 = 1024 possible outcomes 

of generating such a sequence. The event ത𝐸, “none 

of the bits is zero”, includes only one of these 

outcomes, namely the sequence 1111111111.

▸Therefore, p( ത𝐸) = 1/1024.

▸Now p(E) can easily be computed as 

p(E) = 1 – p( ത𝐸) = 1 – 1/1024 = 1023/1024.
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Complementary Events

▸Example II: What is the probability that at least two 

out of 36 people have the same birthday?

▸Solution: The sample space S encompasses all 

possibilities for the birthdays of the 36 people,

so |S| = 36536.

▸Let us consider the event ത𝐸 (“no two people out of  

36 have the same birthday”). ത𝐸 includes P(365, 36) 

outcomes (365 possibilities for the first person’s 

birthday, 364 for the second, and so on). 

▸Then p( ത𝐸) = P(365, 36)/36536 = 0.168,

so p(E) = 0.832 or 83.2%
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Discrete Probability

▸Let E1 and E2 be events in the sample space S.

Then we have:

▸𝑝 𝐸1 ∪ 𝐸2 = 𝑝 𝐸1 + 𝑝 𝐸2 − 𝑝(𝐸1 ∩ 𝐸2)

31

Does this remind you of something?

Of course, the principle of inclusion-exclusion.



Discrete Probability

▸Example: What is the probability of a positive 

integer selected at random from the set of positive 

integers not exceeding 100 to be divisible by 2 or 5? 

▸Solution:

▸E2: “integer is divisible by 2”

E5: “integer is divisible by 5”

▸E2 = {2, 4, 6, …, 100}

▸|E2| = 50

▸p(E2) = 0.5
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Discrete Probability

▸E5 = {5, 10, 15, …, 100}

▸|E5| = 20

▸p(E5) = 0.2

▸E2  E5 = {10, 20, 30, …, 100}

▸|E2  E5| = 10

▸p(E2  E5) = 0.1

▸p(E2  E5) = p(E2) + p(E5) – p(E2  E5 )

▸p(E2  E5) = 0.5 + 0.2 – 0.1 = 0.6
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Discrete Probability

▸What happens if the outcomes of an experiment 
are not equally likely?

▸In that case, we assign a probability p(s) to each 
outcome sS, where S is the sample space.

▸Two conditions have to be met:

▸(1):   0  p(s)  1 for each sS, and

▸(2):   sS p(s) = 1

▸This means, as we already know, that (1) each 
probability must be a value between 0 and 1, and  
(2) the probabilities must add up to 1, because     
one of the outcomes is guaranteed to occur.
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Discrete Probability

▸The function p from the set of all outcomes of the 

sample space S is called a probability distribution.

▸How can we obtain these probabilities p(s) ?

▸The probability p(s) assigned to an outcome s

equals the limit of the number of times s occurs 

divided by the number of times the experiment is 

performed.
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Discrete Probability

▸Once we know the probabilities p(s), we can 

compute the probability of an event E as follows:

▸p(E) = sE p(s) 

▸Suppose that S is a set with n elements. The 

uniform distribution assigns the probability 
1

𝑛
to 

each element of S.
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Discrete Probability

▸Example I: A die is biased so that the number 3 

appears twice as often as each other number.

▸What are the probabilities of all possible outcomes?

▸Solution: There are 6 possible outcomes s1, …, s6.

▸p(s1) = p(s2) = p(s4) = p(s5) = p(s6)

▸p(s3) = 2p(s1)

▸Since the probabilities must add up to 1, we have:

▸5p(s1) + 2p(s1) = 1

▸7p(s1) = 1

▸p(s1) = p(s2) = p(s4) = p(s5) = p(s6) = 1/7, 

▸p(s3) = 2/7 37



Discrete Probability

▸Example II: For the biased die from Example I, 

what is the probability that an odd number appears 

when we roll the die?

▸Solution:

▸Eodd = {s1, s3, s5}

▸Remember the formula p(E) = sE p(s).

▸p(Eodd) = sEodd
p(s) = p(s1) + p(s3) + p(s5)

▸p(Eodd) = 1/7 + 2/7 + 1/7 = 4/7 = 57.14%
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Conditional Probability

▸If we toss a coin three times, what is the probability 

that an odd number of tails appears (event E), if the 

first toss is a tail (event F) ?

▸If the first toss is a tail, the possible sequences are 

TTT, TTH, THT, and THH. 

▸In two out of these four cases, there is an odd 

number of tails. 

▸Therefore, the probability of E, under the condition 

that F occurs, is 0.5.

▸We call this conditional probability. 
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Conditional Probability

▸If we want to compute the conditional probability of 

E given F, we use F as the sample space.

▸For any outcome of E to occur under the condition 

that F also occurs, this outcome must also be in

E  F.

▸Definition: Let E and F be events with p(F) > 0.

The conditional probability of E given F, denoted by 

p(E | F), is defined as

▸p(E | F) = p(E  F)/p(F) 
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Conditional Probability

▸Example: What is the probability of a random bit 
string of length four to contain at least two 
consecutive 0s, given that its first bit is a 0 ?

▸Solution:

▸E: “bit string contains at least two consecutive 0s”

▸F: “first bit of the string is a 0”

▸We know the formula  p(E | F) = p(E  F)/p(F).

▸E  F = {0000, 0001, 0010, 0011, 0100}

▸p(E  F) = 5/16

▸p(F) = 8/16 = 1/2

▸p(E | F) = (5/16)/(1/2) = 10/16 = 5/8 = 0.625
41



Independence

▸Let us return to the example of tossing a coin three 

times.

▸Does the probability of event E (odd number of tails) 

depend on the occurrence of event F (first toss is a 

tail) ?

▸In other words, is it the case that

p(E | F)  p(E) ?

▸We actually find that p(E | F) = 0.5 and p(E) = 0.5,

so we say that E and F are independent events.
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Independence

▸Because we have p(E | F) = p(E  F)/p(F),

p(E | F) = p(E) if and only if p(E  F) = p(E)p(F).

▸Definition: The events E and F are said to be 

independent if and only if p(E  F) = p(E)p(F).

▸Obviously, this definition is symmetrical for E and 

F. If we have p(E  F) = p(E)p(F), then it is also    

true that p(F | E) = p(F).
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Independence

▸Example: Suppose E is the event of rolling an even 

number with an unbiased die. F is the event that the 

resulting number is divisible by three. Are events E 

and F independent? 

▸Solution:

▸p(E) = 1/2, p(F) = 1/3.

▸|E  F|= 1   (only 6 is divisible by both 2 and 3)

▸p(E  F) = 1/6

▸p(E  F) = p(E)p(F)

▸Conclusion: E and F are independent.
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Bernoulli Trials

▸Suppose an experiment with two possible 

outcomes, such as tossing a coin. 

▸Each performance of such an experiment is called 

a Bernoulli trial.

▸We will call the two possible outcomes a success

or a failure, respectively.

▸If p is the probability of a success and q is the 

probability of a failure, it is obvious that

p + q = 1.
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Bernoulli Trials

▸Often we are interested in the probability of exactly 

k successes when an experiment consists of n 

independent Bernoulli trials.

▸Example:

A coin is biased so that the probability of head is 2/3. 

What is the probability of exactly four heads to come 

up when the coin is tossed seven times?
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Bernoulli Trials

▸Solution:

▸There are 27 = 128 possible outcomes.

▸The number of possibilities for four heads among 

the seven trials is C(7, 4).

▸The seven trials are independent, so the probability 

of each of these outcomes is

(2/3)4(1/3)3.

▸Consequently, the probability of exactly four   

heads to appear is

▸C(7, 4)(2/3)4(1/3)3 = 560/2187 = 25.61%
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Bernoulli Trials

▸Illustration: Let us denote a success by ‘S’ and a 

failure by ‘F’. As before, we have a probability of 

success p and probability of failure q = 1 – p.

▸What is the probability of two successes in five

independent Bernoulli trials?

▸Let us look at a possible sequence:

▸SSFFF

▸What is the probability that we will generate   

exactly this sequence?
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Bernoulli Trials

▸Each sequence with two successes in five trials 

occurs with probability p2q3.

49

Sequence:

Probability:

S

p

S

p

F F F

q q q =  p2q3

Another possible sequence:

Sequence:

Probability:

F

q

S

p

F S F

q p q =  p2q3



Bernoulli Trials

▸And how many possible sequences are there?

▸In other words, how many ways are there to pick 

two items from a list of five?

▸We know that there are C(5, 2) = 10 ways to do 

this, so there are 10 possible sequences, each of 

which occurs with a probability of p2q3.

▸Therefore, the probability of any such sequence to 

occur when performing five Bernoulli trials is

C(5, 2) p2q3.

▸In general, for k successes in n Bernoulli trials we 

have a probability of C(n,k)pkqn-k.
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Random Variables

▸In some experiments, we would like to assign a 
numerical value to each possible outcome in order 
to facilitate a mathematical analysis of the 
experiment.

▸For this purpose, we introduce random variables.

▸Definition: A random variable is a function from 
the sample space of an experiment to the set of real 
numbers. That is, a random variable assigns a real 
number to each possible outcome.

▸Note: Random variables are functions, not 
variables, and they are not random, but map 
random results from experiments onto real  
numbers in a well-defined manner.
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Random Variables

▸Example:

▸Let X be the result of a rock-paper-scissors game.

▸If player A chooses symbol a and player B chooses 

symbol b, then 

▸X(a, b) = 1, if player A wins,

▸ = 0, if A and B choose the same symbol, 

▸ = -1, if player B wins.

52



Random Variables

X(rock, rock) = 

53

0 

X(rock, paper) = -1

X(rock, scissors) = 1

X(paper, rock) = 1

X(paper, paper) = 0

X(paper, scissors) = -1

X(scissors, rock) = -1

X(scissors, paper) = 1

X(scissors, scissors) = 0



Random Variables

▸The distribution of a random variable X on a sample space S

is the set of pairs (𝑟, 𝑝(𝑋 = 𝑟)) for all 𝑟 ∈ 𝑋(𝑆), where 𝑝(𝑋 = 𝑟)
is the probability that X takes the value r. (The set of pairs in 

this distribution is determined by the probabilities 𝑝(𝑋 = 𝑟) for 

𝑟 ∈ 𝑋(𝑆).)

▸Example: Suppose that a coin is flipped three times. Let 

𝑋(𝑡) be the random variable that equals the number of heads 

that appear when t is the outcome. So, the distribution of the 

random variable 𝑋 𝑡 is determined by the probabilities 𝑃(𝑋
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Expected Values

▸Once we have defined a random variable for our 

experiment, we can statistically analyze the 

outcomes of the experiment.

▸For example, we can ask: What is the average 

value (called the expected value) of a random 

variable when the experiment is carried out a large 

number of times?

▸Can we just calculate the arithmetic mean across  

all possible values of the random variable?
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Expected Values

▸No, we cannot, since it is possible that some 

outcomes are more likely than others.

▸For example, assume the possible outcomes of an 

experiment are 1 and 2 with probabilities of 0.1 and 

0.9, respectively.

▸Is the average value 1.5?

▸No, since 2 is much more likely to occur than 1,   

the average must be larger than 1.5.
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Expected Values

▸Instead, we have to calculate the weighted sum of 

all possible outcomes, that is, each value of the 

random variable has to be multiplied with its 

probability before being added to the sum.

▸In our example, the average value is given by

0.11 + 0.92 = 0.1 + 1.8 = 1.9.
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Expected Values

▸Definition: The expected value (or expectation or 

mean) of the random variable X(s) on the sample 

space S is equal to:

▸E(X) = sSp(s)X(s).

▸The deviation of X at s ∈ S is 𝑋(𝑠) − 𝐸(𝑋), the 

difference between the value of X and 

the mean of X.
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Expected Values

▸Example: Let X be the random variable equal to the 

sum of the numbers that appear when a pair of dice 

is rolled.

▸There are 36 outcomes (= pairs of numbers from 1 

to 6).

▸The range of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

▸Are the 36 outcomes equally likely?

▸Yes, if the dice are not biased.

▸Are the 11 values of X equally likely to occur?

▸No, the probabilities vary across values.
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Expected Values

P(X = 2) = 
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1/36

P(X = 3) = 2/36 = 1/18

P(X = 4) = 3/36 = 1/12

P(X = 5) = 4/36 = 1/9

P(X = 6) = 5/36 

P(X = 7) = 6/36 = 1/6

P(X = 8) = 5/36

P(X = 9) = 4/36 = 1/9

P(X = 10) = 3/36 = 1/12

P(X = 11) = 2/36 = 1/18

P(X = 12) = 1/36



Expected Values

▸E(X) = 2(1/36) + 3(1/18) + 4(1/12) + 5(1/9) +

6(5/36) + 7(1/6) + 8(5/36) + 9(1/9) +

10(1/12) + 11(1/18) + 12(1/36)

▸E(X) = 7

▸This means that if we roll two dice many times,   

sum all the numbers that appear and divide the   

sum by the number of trials, we expect to find           

a value of 7.
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Expected Values

▸Theorem:

▸If X and Y are random variables on a sample space 

S, then E(X + Y) = E(X) + E(Y).

▸Furthermore, if Xi, i = 1, 2, …, n with a positive 

integer n, are random variables on S, then

E(X1 + X2 + … + Xn) = E(X1) + E(X2) + … + E(Xn).

▸Moreover, if a and b are real numbers, then 

E(aX + b) = aE(X) + b.
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Expected Values

▸Knowing this theorem, we could now solve the 

previous example much more easily:

▸Let X1 and X2 be the numbers appearing on the first 

and the second die, respectively.

▸For each die, there is an equal probability for each 

of the six numbers to appear. Therefore, E(X1) = 

E(X2) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2.

▸We now know that 

E(X1 + X2) = E(X1) + E(X2) = 7.
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Expected Values

▸We can use our knowledge about expected values 
to compute the average-case complexity of an 
algorithm.

▸Let the sample space be the set of all possible 
inputs a1, a2, …, an, and the random variable X 
assign to each aj the number of operations that     
the algorithm executes for that input.

▸For each input aj, the probability that this input 
occurs is given by p(aj).

▸The algorithm’s average-case complexity then is:

▸E(X) = j=1,…,np(aj)X(aj)
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Expected Values

▸However, in order to conduct such an average-

case analysis, you would need to find out:

• the number of steps that the algorithms takes 

for any (!) possible input, and

• the probability for each of these inputs to 

occur.

▸For most algorithms, this would be a highly 

complex task, so we will stick with the worst-case 

analysis.
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Independent Random Variables

▸Definition: The random variables X and Y on a 

sample space S are independent if

▸p(X = r1  Y = r2) = p(X = r1)  p(Y = r2).

▸In other words, X and Y are independent if the 

probability that X = r1  Y = r2 equals the product     

of the probability that X = r1 and the probability     

that Y = r2 for all real numbers r1 and r2.
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Independent Random Variables

▸Example: Are the random variables X1 and X2 from 

the “pair of dice” example independent?

▸Solution:

▸p(X1 = i) = 1/6

▸p(X2 = j) = 1/6

▸p(X1 = i  X2 = j) = 1/36

▸Since p(X1 = i  X2 = j) = p(X1 = i)p(X2 = j) ,

the random variables X1 and X2 are independent.
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Independent Random Variables

▸Theorem: If X and Y are independent random 

variables on a sample space S, then

E(XY) = E(X)E(Y).

▸Note:

▸E(X + Y) = E(X) + E(Y) is true for any X and Y, but

▸E(XY) = E(X)E(Y) needs X and Y to be independent.

▸How come?

68



Independent Random Variables

▸Example: Let X and Y be random variables on 

some sample space, and each of them assumes    

the values 1 and 3 with equal probability. 

▸Then E(X) = E(Y) = 2

▸If X and Y are independent, we have:

▸E(X + Y) = 1/4·(1 + 1) + 1/4·(1 + 3) + 

1/4·(3 + 1) + 1/4·(3 + 3) = 4 = E(X) + E(Y)

▸E(XY) = 1/4·(1·1) + 1/4·(1·3) + 

1/4·(3·1) + 1/4·(3·3) = 4 = E(X)·E(Y)
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Independent Random Variables

▸Let us now assume that X and Y are correlated in 

such a way that Y = 1 whenever X = 1, and Y = 3 

whenever X = 3.

▸E(X + Y) = 1/2·(1 + 1) + 1/2·(3 + 3)  

= 4 = E(X) + E(Y)

▸E(XY) = 1/2·(1·1) + 1/2·(3·3)  

= 5  E(X)·E(Y)
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