
We will cover these parts of the

book (8th edition):

8.1.1, 8.1.2

8.2.1, 8.2.2(up to page 544)

8.3

9.1

9.2.1-9.2.4

9.3

1

Now it’s Time for…

Advanced

Counting

2

Recurrence Relations

▸A recurrence relation for the sequence {an} is an

equation that expresses an is terms of one or more

of the previous terms of the sequence, namely, a0,

a1, …, an-1, for all integers n with

n  n0, where n0 is a nonnegative integer.

▸A sequence is called a solution of a recurrence

relation if its terms satisfy the recurrence relation.

▸In this section we will show that such relations can

be used to study and to solve counting problems.

3

Recurrence Relations

▸In other words, a recurrence relation is like a
recursively defined sequence, but without
specifying any initial values (initial conditions).

▸Therefore, the same recurrence relation can have
(and usually has) multiple solutions.

▸If both the initial conditions and the recurrence
relation are specified, then the sequence is
uniquely determined.

4

Recurrence Relations

▸Example:

Consider the recurrence relation

an = 2an-1 – an-2 for n = 2, 3, 4, …

▸Is the sequence {an} with an=3n a solution of this

recurrence relation?

▸For n  2 we see that

2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an.

▸Therefore, {an} with an=3n is a solution of the

recurrence relation.

5

Recurrence Relations

▸Is the sequence {an} with an=5 a solution of the

same recurrence relation?

▸For n  2 we see that

2an-1 – an-2 = 25 - 5 = 5 = an.

▸Therefore, {an} with an=5 is also a solution of the

recurrence relation.

6

Modeling with Recurrence Relations

▸Example:

▸Someone deposits $10,000 in a savings account

at a bank yielding 5% per year with interest

compounded annually. How much money

will be in the account after 30 years?

▸Solution:

▸Let Pn denote the amount in the account after n

years.

▸How can we determine Pn on the basis of Pn-1?

7

Modeling with Recurrence Relations

▸We can derive the following recurrence relation:

▸Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1.

▸The initial condition is P0 = 10,000.

▸Then we have:

▸P1 = 1.05P0

▸P2 = 1.05P1 = (1.05)2P0

▸P3 = 1.05P2 = (1.05)3P0

▸…

▸Pn = 1.05Pn-1 = (1.05)nP0

▸We now have a formula to calculate Pn for any
natural number n and can avoid the iteration.

8

Modeling with Recurrence Relations

▸Let us use this formula to find P30 under the

▸initial condition P0 = 10,000:

▸P30 = (1.05)3010,000 = 43,219.42

▸After 30 years, the account contains $43,219.42.

9

Modeling with Recurrence Relations

▸Another example:

▸Let an denote the number of bit strings of length n

that do not have two consecutive 0s (“valid strings”).

Find a recurrence relation and give initial conditions

for the sequence {an}.

▸Solution:

▸Idea: The number of valid strings equals the

number of valid strings ending with a 0 plus the

number of valid strings ending with a 1.

10

Modeling with Recurrence Relations

▸Let us assume that n  3, so that the string contains

at least 3 bits.

▸Let us further assume that we know the number

an-1 of valid strings of length (n – 1) and the number

an-2 of valid strings of length (n – 2).

▸Then how many valid strings of length n are there,

if the string ends with a 1?

▸There are an-1 such strings, namely the set of valid

strings of length (n – 1) with a 1 appended to them.

▸Note: Whenever we append a 1 to a valid string,

that string remains valid.

11

Modeling with Recurrence Relations

▸Now we need to know: How many valid strings of

length n are there, if the string ends with a 0?

▸Valid strings of length n ending with a 0 must have

a 1 as their (n – 1)st bit (otherwise they would end

with 00 and would not be valid).

▸And what is the number of valid strings of length (n

– 1) that end with a 1?

▸We already know that there are an-1 strings of

length n that end with a 1.

▸Therefore, there are an-2 strings of length (n – 1)

that end with a 1.

12

Modeling with Recurrence Relations

▸So there are an-2 valid strings of length n that end

with a 0 (all valid strings of length (n – 2) with 10

appended to them).

▸As we said before, the number of valid strings is the

number of valid strings ending with a 0 plus the

number of valid strings ending with a 1.

▸That gives us the following recurrence relation:

▸an = an-1 + an-2

13

Modeling with Recurrence Relations

▸What are the initial conditions?

▸a1 = 2 (0 and 1)

▸a2 = 3 (01, 10, and 11)

▸a3 = a2 + a1 = 3 + 2 = 5

▸a4 = a3 + a2 = 5 + 3 = 8

▸a5 = a4 + a3 = 8 + 5 = 13

▸…

▸This sequence satisfies the same recurrence

relation as the Fibonacci sequence.

▸Since a1 = f3 and a2 = f4, we have an = fn+2.
14

Solving Recurrence Relations

▸In general, we would prefer to have an explicit
formula to compute the value of an rather than
conducting n iterations.

▸For one class of recurrence relations, we can
obtain such formulas in a systematic way.

▸Those are the recurrence relations that express
the terms of a sequence as linear combinations
of previous terms.

15

Solving Recurrence Relations

▸Definition: A linear homogeneous recurrence
relation of degree k with constant coefficients is
a recurrence relation of the form:

▸an = c1an-1 + c2an-2 + … + ckan-k,

▸Where c1, c2, …, ck are real numbers, and ck  0.

▸A sequence satisfying such a recurrence relation is
uniquely determined by the recurrence relation and
the k initial conditions

▸a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.

16

Solving Recurrence Relations

▸Examples:

▸The recurrence relation Pn = (1.05)Pn-1

▸is a linear homogeneous recurrence relation of
degree one.

▸The recurrence relation fn = fn-1 + fn-2

▸is a linear homogeneous recurrence relation of
degree two.

▸The recurrence relation an = an-5

▸is a linear homogeneous recurrence relation of
degree five.

17

Solving Recurrence Relations

▸Basically, when solving such recurrence relations,

we try to find solutions of the form an = rn, where r is

a constant.

▸an = rn is a solution of the recurrence relation

an = c1an-1 + c2an-2 + … + ckan-k if and only if

▸rn = c1r
n-1 + c2r

n-2 + … + ckr
n-k.

▸Divide this equation by rn-k and subtract the right-

hand side from the left:

▸rk - c1r
k-1 - c2r

k-2 - … - ck-1r - ck = 0

▸This is called the characteristic equation of the

recurrence relation.

18

Solving Recurrence Relations

▸The solutions of this equation are called the
characteristic roots of the recurrence relation.

▸Let us consider linear homogeneous recurrence
relations of degree two.

▸Theorem: Let c1 and c2 be real numbers. Suppose
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2.

▸Then the sequence {an} is a solution of the recurrence
relation an = c1an-1 + c2an-2 if and only if an = 1r1

n +
2r2

n for n = 0, 1, 2, …, where 1 and 2 are constants.

▸The proof is shown on page 542/543 (8th Edition),
515/516 (7th Edition)

19

Solving Recurrence Relations

▸Example: What is the solution of the recurrence

relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ?

▸Solution: The characteristic equation of the

recurrence relation is r2 – r – 2 = 0. (because C1=1,

C2=2)

▸Its roots are r = 2 and r = -1.

▸Hence, the sequence {an} is a solution to the

recurrence relation if and only if:

▸an = 12
n + 2(-1)n for some constants 1 and 2.

20

Solving Recurrence Relations

▸Given the equation an = 12
n + 2(-1)n and the initial

conditions a0 = 2 and a1 = 7, it follows that

▸a0 = 2 = 1 + 2

▸a1 = 7 = 12 + 2 (-1)

▸Solving these two equations gives us

1 = 3 and 2 = -1.

▸Therefore, the solution to the recurrence relation

and initial conditions is the sequence {an} with

▸an = 32n – (-1)n.

21

Solving Recurrence Relations

▸Another Example: Give an explicit formula for the

Fibonacci numbers.

▸Solution: The Fibonacci numbers satisfy the

recurrence relation fn = fn-1 + fn-2 with initial conditions

f0 = 0 and f1 = 1.

▸The characteristic equation is r2 – r – 1 = 0.

▸Its roots are

22

2

51
,

2

51
21





 rr

Solving Recurrence Relations

▸Therefore, the Fibonacci numbers are given by

23

nn

nf 











 














 


2

51

2

51
21 

for some constants 𝛼1 and 𝛼2.

We can determine values for these constants so that the

sequence meets the conditions f0 = 0 and f1 = 1:

0210  f

1
2

51

2

51
211 













 













 
 f

Solving Recurrence Relations

▸The unique solution to this system of two equations

and two variables is

24

5

1
,

5

1
21  

So finally we obtained an explicit formula for the Fibonacci

numbers:

nn

nf 











 














 


2

51

5

1

2

51

5

1

Solving Recurrence Relations

▸But what happens if the characteristic equation has

only one root?

▸How can we then match our equation with the initial

conditions a0 and a1 ?

▸Theorem: Let c1 and c2 be real numbers with c2 0.

Suppose that r2 – c1r – c2 = 0 has only one root r0.

A sequence {an} is a solution of the recurrence

relation an = c1an-1 + c2an-2 if and only if

an = 1r0
n + 2nr0

n, for n = 0, 1, 2, …, where 1 and

2 are constants.

25

Solving Recurrence Relations

▸Example: What is the solution of the recurrence

relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6?

▸Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3.

Hence, the solution to the recurrence relation is

▸an = 13
n + 2n3n for some constants 1 and 2.

▸To match the initial condition, we need

▸a0 = 1 = 1

a1 = 6 = 13 + 23

▸Solving these equations yields 1 = 1 and 2 = 1.

▸Consequently, the overall solution is given by

▸an = 3n + n3n.
26

Divide-and-Conquer Relations

▸Some algorithms take a problem and successively

divide it into one or more smaller problems until there

is a trivial solution to them.

▸For example, the binary search algorithm

recursively divides the input into two halves

and eliminates the irrelevant half until only

one relevant element remained.

▸This technique is called “divide and conquer”.

▸We can use recurrence relations to analyze the

complexity of such algorithms.

27

Divide-and-Conquer Relations

▸Suppose that an algorithm divides a problem (input)

of size n into a subproblems, where each subproblem

is of size n/b. Assume that g(n) operations are

performed for such a division of a problem.

▸Then, if f(n) represents the number of operations

required to solve the problem, it follows that f satisfies

the recurrence relation

▸f(n) = af(n/b) + g(n).

▸This is called a divide-and-conquer recurrence

relation.

28

Divide-and-Conquer Relations

▸Example: The binary search algorithm reduces the

search for an element in a search sequence of size n

to the binary search for this element in a search

sequence of size n/2 (if n is even).

▸Two comparisons are needed to perform this

reduction.

▸Hence, if f(n) is the number of comparisons required

to search for an element in a search sequence of size

n, then

▸f(n) = f(n/2) + 2 if n is even.

29

Divide-and-Conquer Relations

▸Usually, we do not try to solve such divide-and

conquer relations, but we use them to derive a

big-O estimate for the complexity of an algorithm.

▸Master Theorem: Let f be an increasing function

that satisfies the recurrence relation

▸f(n) = af(n/b) + cnd

▸whenever n = bk, where k is a positive integer, a, c,

and d are real numbers with a  1, and b is an integer

greater than 1. Then f(n) is

▸O(nd), if a < bd,

▸O(nd log n) if a = bd,

▸O(nlogba) if a > bd

30

Divide-and-Conquer Relations

▸Example:

▸For binary search, we have

f(n) = f(n/2) + 2, so a = 1, b = 2, and d = 0

▸(d = 0 because here, g(n) does not depend on n).

▸Consequently, a = bd, and therefore,

f(n) is O(nd log n) = O(log n).

▸The binary search algorithm has logarithmic time

complexity.

31

How About Some…

▸Relations

32

Relations

▸If we want to describe a relationship between

elements of two sets A and B, we can use ordered

pairs with their first element taken from A and their

second element taken from B.

▸Since this is a relation between two sets, it is called

a binary relation.

▸Definition: Let A and B be sets. A binary relation

from A to B is a subset of AB.

▸In other words, for a binary relation R we have

R  AB. We use the notation aRb to denote that

(a, b)R and 𝑎𝑅𝑏 to denote that (a, b)R.

33

Relations

▸When (a, b) belongs to R, a is said to be related to b
by R.

▸Example: Let P be a set of people, C be a set of
cars, and D be the relation describing which person
drives which car(s).

▸P = {Carl, Suzanne, Peter, Carla},

▸C = {Mercedes, BMW, tricycle}

▸D = {(Carl, Mercedes), (Suzanne, Mercedes),
(Suzanne, BMW), (Peter, tricycle)}

▸This means that Carl drives a Mercedes, Suzanne
drives a Mercedes and a BMW, Peter drives a
tricycle, and Carla does not drive any of these
vehicles.

34

Functions as Relations

▸You might remember that a function f from a set A

to a set B assigns a unique element of B to each

element of A.

▸The graph of f is the set of ordered pairs (a, b) such

that b = f(a).

▸Since the graph of f is a subset of AB, it is a

relation from A to B.

▸Moreover, for each element a of A, there is exactly

one ordered pair in the graph that has a as its first

element and b as its second element.

35

Functions as Relations

▸Conversely, if R is a relation from A to B such that

every element in A is the first element of exactly one

ordered pair of R, then a function can be defined with

R as its graph.

▸This is done by assigning to an element aA the

unique element bB such that (a, b)R.

36

Relations on a Set

▸Definition: A relation on the set A is a relation from

A to A.

▸In other words, a relation on the set A is a subset of

AA.

▸Example: Let A = {1, 2, 3, 4}. Which ordered pairs

are in the relation R = {(a, b) | a < b} ?

37

Relations on a Set

▸Solution: R = {

38

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

R 1 2 3 4

1

2

3

4

1 1

2

3

4

2

3

4

X X X

X X

X

Relations on a Set

▸How many different relations can we define on a
set A with n elements?

▸A relation on a set A is a subset of AA.

▸How many elements are in AA ?

▸There are n2 elements in AA, so how many
subsets (= relations on A) does AA have?

▸The number of subsets that we can form out of a
set with m elements is 2m. Therefore, 2n2

subsets
can be formed out of AA.

▸Answer: We can define 2n2
different relations

on A.

39

Properties of Relations

▸We will now look at some useful ways to classify

relations.

▸Definition: A relation R on a set A is called reflexive

if (a, a)R for every element aA.

▸Are the following relations on {1, 2, 3, 4} reflexive?

40

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes

R = {(1, 1), (2, 2), (3, 3)} No

Definition: A relation on a set A is called irreflexive if

(a, a) ∉ R for every element a ∈ A.

Properties of Relations

▸Definitions:

▸A relation R on a set A is called symmetric if

(b, a)R whenever (a, b)R for all a, bA.

▸A relation R on a set A is called antisymmetric if

a = b whenever (a, b)R and (b, a)R.

▸A relation R on a set A is called asymmetric if

(a, b)R implies that (b, a)R for all a, bA.

41

Properties of Relations

▸Definition: A relation R on a set A is called
transitive if whenever (a, b)R and (b, c)R, then
(a, c)R for a, b, cA.

▸Are the following relations on {1, 2, 3, 4}
transitive?

42

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.

R = {(1, 3), (3, 2), (2, 1)} No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.

Counting Relations

▸Example: How many different reflexive relations can
be defined on a set A containing n elements?

▸Solution: Relations on R are subsets of AA, which
contains n2 elements.

▸Therefore, different relations on A can be generated
by choosing different subsets out of these n2

elements, so there are 2n2
relations.

▸A reflexive relation, however, must contain the n
elements (a, a) for every aA.

▸Consequently, we can only choose among n2 – n
= n(n – 1) elements to generate reflexive relations,
so there are 2n(n – 1) of them.

43

Combining Relations

▸Relations are sets, and therefore, we can apply the

usual set operations to them.

▸If we have two relations R1 and R2, and both of them

are from a set A to a set B, then we can combine

them to R1  R2, R1  R2, or R1 – R2.

▸In each case, the result will be another relation

from A to B.

44

Combining Relations

▸… and there is another important way to combine
relations.

▸Definition: Let R be a relation from a set A to a set
B and S a relation from B to a set C. The composite
of R and S is the relation consisting of ordered pairs
(a, c), where aA, cC, and for which there exists an
element bB such that (a, b)R and
(b, c)S. We denote the composite of R and S by
SR.

▸In other words, if relation R contains a pair (a, b)
and relation S contains a pair (b, c), then SR
contains a pair (a, c).

45

Combining Relations

▸Example: Let D and S be relations on A = {1, 2, 3, 4}.

▸D = {(a, b) | b = 5 - a} “b equals (5 – a)”

▸S = {(a, b) | a < b} “a is smaller than b”

▸D = {(1, 4), (2, 3), (3, 2), (4, 1)}

▸S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

▸SD = {

46

(2, 4), (3, 3), (3, 4), (4, 2), (4, 3),

D maps an element a to the element (5 – a), and afterwards

S maps (5 – a) to all elements larger than (5 – a), resulting

in S  D = {(a,b) | b > 5 – a} or S  D = {(a,b) | a + b > 5}.

(4, 4)}

Combining Relations

▸We already know that functions are just
special cases of relations (namely those that
map each element in the domain onto exactly
one element in the codomain).

▸If we formally convert two functions into
relations, that is, write them down as sets of
ordered pairs, the composite of these relations
will be exactly the same as the composite of
the functions (as defined earlier).

47

Combining Relations

▸Definition: Let R be a relation on the set A. The

powers Rn, n = 1, 2, 3, …, are defined inductively by

▸R1 = R

▸Rn+1 = RnR

▸In other words:

▸Rn = RR … R (n times the letter R)

48

Combining Relations

▸Theorem: The relation R on a set A is transitive if
and only if Rn  R for all positive integers n.

▸Remember the definition of transitivity:

▸Definition: A relation R on a set A is called transitive
if whenever (a, b)R and (b, c)R, then (a, c)R for
a, b, cA.

▸The composite of R with itself contains exactly these
pairs (a, c).

▸Therefore, for a transitive relation R, RR does not
contain any pairs that are not in R, so RR  R.

▸Since RR does not introduce any pairs that are
not already in R, it must also be true that
(RR)R  R, and so on, so that Rn  R.

49

n-ary Relations

▸In order to study an interesting application of

relations, namely databases, we first need to

generalize the concept of binary relations to n-ary

relations.

▸Definition: Let A1, A2, …, An be sets. An n-ary

relation on these sets is a subset of A1A2…An.

▸The sets A1, A2, …, An are called the domains

of the relation, and n is called its degree.

50

n-ary Relations

▸Example:

▸Let R = {(a, b, c) | a = 2b  b = 2c with a, b, cZ}

▸What is the degree of R?

▸The degree of R is 3, so its elements are triples.

▸What are its domains?

▸Its domains are all equal to the set of integers.

▸Is (2, 4, 8) in R?

▸No.

▸Is (4, 2, 1) in R?

▸Yes.

51

Databases and Relations

▸Let us take a look at a type of database

representation that is based on relations,

namely the relational data model.

▸A database consists of n-tuples called

records, which are made up of fields.

▸These fields are the entries of the n-tuples.

▸The relational data model represents a database

as an n-ary relation, that is, a set of records.

52

Databases and Relations

▸Example: Consider a database of students, whose

records are represented as 4-tuples with the fields

Student Name, ID Number, Major, and GPA:

▸R = {(Ackermann, 00231455, CS, 3.88),

(Adams, 00888323, Physics, 3.45),

(Chou, 00102147, CS, 3.79),

(Goodfriend, 00453876, Math, 3.45),

(Rao, 00678543, Math, 3.90),

(Stevens, 00786576, Psych, 2.99)}

▸Relations that represent databases are also called

tables, since they are often displayed as tables.

53

Databases and Relations

▸A domain of an n-ary relation is called a primary key
if the n-tuples are uniquely determined by their values
from this domain.

▸This means that no two records have the same value
from the same primary key.

▸In our example, which of the fields Student Name,
ID Number, Major, and GPA are primary keys?

▸Student Name and ID Number are primary keys,
because no two students have identical values in
these fields.

▸In a real student database, only ID Number
would be a primary key.

54

Databases and Relations

▸In a database, a primary key should remain a

primary key even if new records are added.

▸Therefore, we should use a primary key of the

intension of the database, containing all the n-tuples

that can ever be included in our database.

▸Combinations of domains can also uniquely

identify n-tuples in an n-ary relation.

▸When the values of a set of domains determine

an n-tuple in a relation, the Cartesian product

of these domains is called a composite key.

55

Databases and Relations

▸We can apply a variety of operations on n-ary
relations to form new relations.

▸Definition: Let R be an n-ary relation and C a
condition that elements in R may satisfy. Then the
selection operator 𝑠𝐶 maps the n-ary relation R to
the n-ary relation of all n-tuples from R that satisfy the
condition C.

▸Example: What is the result when we apply the
selection 𝐶1 to the student records, Where 𝐶1 is the
condition Major = “Computer Science”?

▸Solution: The result is the two 4-tuples
(Ackermann, 231455, Computer Science, 3.88)
and (Chou, 102147, Computer Science,3.49) 56

Databases and Relations

▸Definition: The projection Pi1, i2, …, im
maps the n-

tuple (a1, a2, …, an) to the m-tuple (ai1
, ai2

, …, aim
),

where m  n.

▸In other words, a projection Pi1, i2, …, im
keeps the m

components ai1
, ai2

, …, aim
of an n-tuple and deletes

its (n – m) other components.

▸Example: What is the result when we apply the
projection P2,4 to the student record (Stevens,
00786576, Psych, 2.99) ?

▸Solution: It is the pair (00786576, 2.99).

57

Databases and Relations

▸In some cases, applying a projection to an entire

table may not only result in fewer columns, but also in

fewer rows.

▸Why is that?

▸Some records may only have differed in those fields

that were deleted, so they become identical, and

there is no need to list identical records more than

once.

58

Databases and Relations

▸We can use the join operation to combine two tables

into one if they share some identical fields.

▸Definition: Let R be a relation of degree m and S a

relation of degree n. The join Jp(R, S), where p  m

and p  n, is a relation of degree m + n – p that

consists of all (m + n – p)-tuples

(a1, a2, …, am-p, c1, c2, …, cp, b1, b2, …, bn-p),

where the m-tuple (a1, a2, …, am-p, c1, c2, …, cp)

belongs to R and the n-tuple (c1, c2, …, cp, b1, b2,

…, bn-p) belongs to S.

59

Databases and Relations

▸In other words, to generate Jp(R, S), we have to find

all the elements in R whose p last components match

the p first components of an element in S.

▸The new relation contains exactly these matches,

which are combined to tuples that contain each

matching field only once.

60

Databases and Relations

▸Example: What is J1(Y, R), where Y contains the

fields Student Name and Year of Birth,

▸Y = {(1978, Ackermann),

(1972, Adams),

(1917, Chou),

(1984, Goodfriend),

(1982, Rao),

(1970, Stevens)},

▸and R contains the student records as defined

before?

61

Databases and Relations

▸Solution: The resulting relation is:

▸ {(1978, Ackermann, 00231455, CS, 3.88),

(1972, Adams, 00888323, Physics, 3.45),

(1917, Chou, 00102147, CS, 3.79),

(1984, Goodfriend, 00453876, Math, 3.45),

(1982, Rao, 00678543, Math, 3.90),

(1970, Stevens, 00786576, Psych, 2.99)}

▸Since Y has two fields and R has four, the relation

J1(Y, R) has 2 + 4 – 1 = 5 fields.

62

Representing Relations

▸We already know different ways of representing
relations. We will now take a closer look at two ways
of representation: Zero-one matrices and directed
graphs.

▸If R is a relation from A = {a1, a2, …, am} to B =
{b1, b2, …, bn}, then R can be represented by the
zero-one matrix MR = [mij] with

▸mij = 1, if (ai, bj)R, and

▸mij = 0, if (ai, bj)R.

▸Note that for creating this matrix we first need to
list the elements in A and B in a particular, but
arbitrary order.

63

Representing Relations

▸Example: How can we represent the relation R from

the set A = {1, 2, 3} to the set B = {1, 2} with R =

{(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

▸Solution: The matrix MR is given by

64



















11

01

00

RM

Representing Relations

▸What do we know about the matrices representing a
relation on a set (a relation from A to A) ?

▸They are square matrices.

▸What do we know about matrices representing
reflexive relations?

▸All the elements on the diagonal of such matrices
Mref must be 1s.

65





























1

.

.

.

1

1

refM

Representing Relations

▸What do we know about the matrices representing

symmetric relations?

▸These matrices are symmetric, that is, MR = (MR)t.

66





















1101

1001

0010

1101

RM

symmetric matrix,

symmetric relation.





















0011

0011

0011

0011

RM

non-symmetric matrix,

non-symmetric relation.

Representing Relations

▸The Boolean operations join and meet (you
remember?) can be used to determine the matrices
representing the union and the intersection of two
relations, respectively.

▸To obtain the join of two zero-one matrices, we apply
the Boolean “or” function to all corresponding elements
in the matrices.

▸To obtain the meet of two zero-one matrices,
we apply the Boolean “and” function to all
corresponding elements in the matrices.

67

Representing Relations

▸Example: Let the relations R and S be represented
by the matrices

68



















011

111

101

SRSR MMM



















001

110

101

SM

What are the matrices representing R∪S and R∩S?

Solution: These matrices are given by



















000

000

101

SRSR MMM



















010

001

101

RM

Representing Relations Using Matrices

69

Do you remember the Boolean product of two zero-one

matrices?

Let A = [aij] be an m×k zero-one matrix and

B = [bij] be a k×n zero-one matrix.

Then the Boolean product of A and B, denoted by A∘B, is

the m×n matrix with (i, j)th entry [cij], where

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ … ∨ (aik ∧ bkj).

cij = 1 if and only if at least one of the terms

(ain ∧ bnj) = 1 for some n; otherwise cij = 0.

Representing Relations Using Matrices

70

Let us now assume that the zero-one matrices

MA = [aij], MB = [bij] and MC = [cij] represent relations A, B, and

C, respectively.

Remember: For 𝑀𝐶 = 𝑀𝐴 ∘ 𝑀𝐵 we have:

cij = 1 if and only if at least one of the terms

(ain ∧ bnj) = 1 for some n; otherwise cij = 0.

In terms of the relations, this means that C contains a pair

(xi, zj) if and only if there is an element yn such that (xi, yn) is

in relation A and (yn, zj) is in relation B.

Therefore, C = B∘A (composite of A and B).

Representing Relations Using Matrices

71

This gives us the following rule:

MB∘A
= MA⨀MB

In other words, the matrix representing the composite of

relations A and B is the Boolean product of the matrices

representing A and B.

Analogously, we can find matrices representing the

powers of relations:

MRn = MR
[n] (n-th Boolean power).

Representing Relations Using Matrices

▸Example: Find the matrix representing R2, where the

matrix representing R is given by

72



















001

110

010

RM

Solution: The matrix for R2 is given by



















010

111

110
]2[

2 RR
MM

Representing Relations Using Digraphs

▸Definition: A directed graph, or digraph, consists

of a set V of vertices (or nodes) together with a set

E of ordered pairs of elements of V called edges (or

arcs).

▸The vertex a is called the initial vertex of the edge

(a, b), and the vertex b is called the terminal vertex

of this edge.

▸We can use arrows to display graphs.

73

Representing Relations Using Digraphs

▸Example: Display the digraph with V = {a, b, c, d},

E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

74

a
b

cd

An edge of the form (b, b) is called a loop.

Representing Relations Using Digraphs

▸Obviously, we can represent any relation R on a set

A by the digraph with A as its vertices and all pairs (a,

b)R as its edges.

▸Vice versa, any digraph with vertices V and edges E

can be represented by a relation on V containing all

the pairs in E.

▸This one-to-one correspondence between relations

and digraphs means that any statement about

relations also applies to digraphs, and vice versa.

75

