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HW2: Set, Functions, Sequences, Sums, matrices, and Algorithms 

Assigned: 19 July 2020 Due: 26 July 2020 

1. Exercise 22 page 132 

a) 0  b) 1  c) 2  d) 3 

2. Exercise 28 page 132 

Suppose (𝑎, 𝑏) ∈ 𝐴 × 𝐵 ⟶ (𝑎 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵) ⟶ (𝑎 ∈ 𝐶) ∧ (𝑏 ∈ 𝐷) ⟶ (𝑎, 𝑏) ∈

𝐶 × 𝐷 ⟶ 𝐴 × 𝐵 ⊆ 𝐶 × 𝐷 

3. Exercise 12 page 144 

Suppose 𝑥 ∈ 𝐴 ∪ (𝐴 ∩ 𝐵) ⟶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐴 ∩ 𝐵) ⟶ (𝑥 ∈ 𝐴) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈

𝐵) ⟶ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ⟶ (𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ⟶ 𝑥 ∈

𝐴 ⟶ 𝐴 ∪ (𝐴 ∩ 𝐵) ⊆ 𝐴 

For the other side, suppose 𝑥 ∈ 𝐴 ⟶ 𝑥 ∈ 𝐴 ∪ (𝐴 ∩ 𝐵) 

So we have 𝐴 ∪ (𝐴 ∩ 𝐵) = 𝐴 

4. Exercise 56 page 145 

a) ⋃ 𝐴𝑖
∞
𝑖=1 = 𝑍+  ⋂ 𝐴𝑖 = ∅∞

𝑖=1  

b) ⋃ 𝐴𝑖
∞
𝑖=1 = 𝑁  ⋂ 𝐴𝑖 = {0}∞

𝑖=1  

c) ⋃ 𝐴𝑖
∞
𝑖=1 = 𝑅+  ⋂ 𝐴𝑖 = (0,1)∞

𝑖=1  

d) ⋃ 𝐴𝑖
∞
𝑖=1 = (1,∞)  ⋂ 𝐴𝑖 = ∅∞

𝑖=1  

5. Exercise 12 page 162 

a) One-to-on because 𝑓(𝑥) = 𝑓(𝑦) ⟶ 𝑥 − 1 = 𝑦 − 1 ⟶ 𝑥 = 𝑦 

b) Not one-to-one because 𝑓(𝑥) = 𝑓(𝑦) ⟶ 𝑥2 + 1 = 𝑦2 + 1 ⟶ 𝑥 = ±𝑦 . For 

example 𝑥 = 1 and 𝑦 = −1. So 𝑥 ≠ 𝑦 

c) One-to-on because 𝑓(𝑥) = 𝑓(𝑦) ⟶ 𝑥3 = 𝑦3 ⟶ 𝑥 = 𝑦 

d) Not one-to-one because 𝑓(𝑥) = 𝑓(𝑦) ⟶ ⌈
𝑥

2
⌉ = ⌈

𝑦

2
⌉. For example 𝑥 = 1 and 𝑦 =

2. So 𝑥 ≠ 𝑦 
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6. Exercise 22 page 162 

a) It is a bijection because it’s both one-to-one and onto.  

𝑓(𝑥) = 𝑓(𝑦) → −3𝑥 + 4 = −3𝑦 + 4 → 𝑥 = 𝑦 

∀𝑦∃𝑥(𝑦 = −3𝑥 + 4 → 𝑥 =
4 − 𝑦

3
) 

b) Not a bijection. Because it’s not one-to-one.  

𝑓(𝑥) = 𝑓(𝑦) → −3𝑥2 + 7 = −3𝑦2 + 7 → 𝑥2 = 𝑦2 → 𝑥 = ±𝑦 

c) Not a function. Because you cannot assign -2 to x. 

d) It is a bijection because it’s both one-to-one and onto.  

𝑓(𝑥) = 𝑓(𝑦) → 𝑥5 + 1 = 𝑦5 + 1 → 𝑥 = 𝑦 

∀𝑦∃𝑥(𝑦 = 𝑥5 + 1 → 𝑥 = √𝑦 − 15
 

7. Exercise 26 (a,b,c) page 178 

a) 𝑎𝑛 = 𝑛2 + 2. The next three terms are 123, 146, 171 

b) 𝑎𝑛 = 7 + 4(𝑛 − 1). The next three terms are 47, 51, 55 

c) 𝑎𝑛 = binary expansion of 𝑛. The next three terms are 1100, 1101, 1110 

8. Exercise 34 page 179 

a) ∑ ∑ (𝑖 − 𝑗) = ∑ (∑ 𝑖 −2
𝑗=1 ∑ 𝑗2

𝑗=1 ) =3
𝑖=1 ∑ (2𝑖 − 3) = 23

𝑖=1 ∑ 𝑖3
𝑖=1 − 9 = 32

𝑗=1
3
𝑖=1  

b) ∑ ∑ (3𝑖 + 2𝑗) =2
𝑗=0

3
𝑖=0 ∑ (∑ 3𝑖 +2

𝑗=0 ∑ 2𝑗2
𝑗=0 ) =3

𝑖=0 ∑ (3∑ 𝑖 +2
𝑗=0 2∑ 𝑗2

𝑗=0 ) =3
𝑖=0

∑ (9𝑖 + 6) =3
𝑖=0 9∑ 𝑖3

𝑖=0 + ∑ 6 =3
𝑖=0 54 + 24 = 78 

c) ∑ ∑ 𝑗 = ∑ 3 = 93
𝑖=1

2
𝑗=0

3
𝑖=1  

d) ∑ ∑ (𝑖2𝑗3) = ∑ (𝑖2 ∑ 𝑗33
𝑗=0 ) =2

𝑖=0 ∑ (𝑖2
(32∗42)

4
) = 36∑ 𝑖22

𝑖=0 = 1802
𝑖=0

3
𝑗=0

2
𝑖=0  
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9. Exercise 6 page 194 

𝐴 = [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]. So we have: 

𝑎 + 3𝑑 + 2𝑔 = 7,  𝑏 + 3𝑒 + 2ℎ = 1,  𝑐 + 3𝑓 + 2𝑖 = 3,  2𝑎 + 𝑑 + 𝑔 = 1 ,  2𝑏 +

𝑒 + ℎ = 0,  2𝑐 + 𝑓 + 𝑖 = 3,  4𝑎 + 3𝑔 = −1,  4𝑏 + 3ℎ = −3,  4𝑐 + 3𝑖 = 7 

Therefore 𝐴 = [
−1 0 1
2 1 0
1 −1 1

] 

10. Exercise 20 page 194 

a) 𝐴−1 = [
−

3

5

2

5
1

5

1

5

] 

b) 𝐴2 = [
3 4
2 11

],  𝐴3 = [
1 18
9 37

] 

c) (𝐴−1)2 = [

11

25
−

4

25

−
2

25

3

25

],  (𝐴−1)3 = [
−

37

125

18

125
9

125
−

1

125

] 

d) (𝐴−1)3 = (𝐴3)−1 = [
−

37

125

18

125
9

125
−

1

125

]  

11. Exercise 2 page 213 

a) It has Definiteness and Effectiveness 

b) It has Definiteness and Finiteness 

c) It has Definiteness, Correctness, Finiteness, and Effectiveness 

d) It has Correctness, Finiteness, and Effectiveness 
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12. Exercise 8 page 214 

procedure max_even(𝑎1, 𝑎2, … , 𝑎𝑛: integers) 

 meven := 0 

idx := 0 

 for i := 1 to n 

 begin 

  if 𝑎𝑖 is even and 𝑎𝑖 > 𝑚𝑒𝑣𝑒𝑛 then 𝑚𝑒𝑣𝑒𝑛 ≔ 𝑎𝑖  and idx := i 

end 

return idx 

13. Exercise 26 page 229 

a) 𝑂(𝑓(𝑥)) = 𝑂(max⁡(𝑛3. log 𝑛, log 𝑛. 𝑛3)) = 𝑂(𝑛3 log 𝑛) 

b) 𝑂(𝑓(𝑥)) = 𝑂(2𝑛. 3𝑛) = 𝑂(6𝑛) 

c) 𝑂(𝑓(𝑥)) = 𝑂(nn. 𝑛!) 

14. Exercise 40 page 229 

We will show that log𝑏 𝑥 = 𝑂(log𝑎 𝑥) and log𝑎 𝑥 = 𝑂(log𝑏 𝑥). 

If you choose 𝐾 = 0 and 𝐶 = log𝑏 𝑎, then we have log𝑏 𝑥 ≤ 𝐶 log𝑎 𝑥 = log𝑎 𝑥 𝐶 =

log𝑎 𝑥 log𝑏 𝑎 = log𝑏 𝑎
log𝑎 𝑥 = log𝑏 𝑥. So log𝑏 𝑥 = 𝑂(log𝑎 𝑥) 

If you choose 𝐾 = 0 and 𝐶 = log𝑎 𝑏, then we have log𝑎 𝑥 ≤ 𝐶 log𝑏 𝑥 = log𝑏 𝑥 𝐶 =

log𝑏 𝑥 log𝑎 𝑏 = log𝑎 𝑏
log𝑏 𝑥 = log𝑎 𝑥. So log𝑎 𝑥 = 𝑂(log𝑏 𝑥) 

Therefore 𝑂(log𝑎 𝑥) = 𝑂(log𝑏 𝑥) 

15. Exercise 2 page 241 

There are two for loop from 1 to n. So it’s 𝑂(𝑛2) 


