
Name: __

University of Massachusetts - Boston Dr. Ronald Cheung

Programming in C CS 240 - Spring 2011

 1 out of 2

In-Class, Open Book Exam II

April 28, 2011

The work on this examination is to be your own and you are expected to adhere to the UMass-Boston honor system. All questions can

be answered by one or two short sentences. Do not try to make up for a lack of understanding by providing a rambling answer.
Note: I give partial credit! Show all work!

1. (20 points) UNIX and C
a. (2 points) If array abc is defined as char abc[10],

what is wrong with abc=abc +1?

b. (2 points) What does the UNIX command tail do?

c. (2 points) Successive operations of malloc and free

can cause ______________ in memory.

d. (2 points) What is the major use of the generic(or

void) pointer?

e. (2 points) What is the difference between a union

and a struct?

f. (2 points) Give an example on how to terminate a

recursion.

g. (4 points) char a[10], b[] = “ABCD”;

 value returned from strlen(b): ____________

 how many chars do strcpy(a,b) copy? ______

h. (2 points) Why is it not a good idea to define 1 big

common header file to be used by all functions?

i. (2 points) What is a macro?

2. (20 points) Evaluate expressions

Fill in the values. Assume the pointer gets updated

after each evaluation.

 char text[] = “This_is_a_very_easy_test”;
 char phone[] = “6172876483”;

 struct tag{

 char *p2; char *p3;} name ={phone,text};

 char *p4=name.p3;

 struct tag * p5=&name;

 value of *p4++ ________

 value of ++*p4 ________

 value of p4[2] ________

 value of p5->p2 ________

 value of * ++p5->p2 ________

CONTINUE ON REVERSE SIDE

University of Massachusetts - Boston Dr. Ronald Cheung

Programming in C CS 240 - Spring 2011

 2 out of 2

3. (20 points) makefile

The dependency list of making cake is shown in the

above diagram.

i) (10 points) Write a makefile to make cake. Include

a clean option to delete all object files.

ii) (10 points) If you use the UNIX command “touch”

to modify file flour.h, and re-make cake, write down

what make will do.

4. (40 points) logging function

You are asked to write a C function log_error() to log

error messages from a main program. The error

message will have a time stamp and a text string. The

time stamp will be expressed in a 24-hour integer

format (e.g. 8:20 am will be stored as 0820 and

8:20pm will be 2020). The function will compose the

message (time stamp + text) and store in a buffer

which only has room for 50 total messages. It is

required to log the most recent 50 messages. The
function will print out all 50 messages stored at the

end.

The main program is as follows:

int main(){

 int time_stamp;

 char err1[]= “error: buffer overflows!”;

 char err2[]= “error: divide by 0!”;

 ….

 time_stamp=0820;

 log_error(time_stamp, err1);

 …

 time_stamp=2020;

 log_error(time_stamp, err2);

 …

}

Prototype for the log_error function is as follows:

int log_error(int ts, char * msg_ptr);

 where ts is the time stamp,

 msg_ptr points to the text of the error message,

 and the function returns 0 if failure occurs.

Show your pseudo-code and C code.

cake

 nut.o batter.o frosting.o

chop.c mix.c spread.c

sugar.h

flour.h

University of Massachusetts - Boston Dr. Ronald Cheung

Programming in C CS 240 - Spring 2011

 3 out of 2

Answers:

1.
a. abc =&abc[0] is an address determined during

compilation/linking. Cannot be modified during

execution.

b. tail command prints out the last n lines of a file

c. fragmentation in memory.

d. Library functions can return a generic pointer(void

*) to calling programs and the calling programs

can use it by casting it to the corresponding type.

e. A struct/union is a collection of variables grouped

under 1 name. A union’s members share the

memory of the largest member whereas a struct has

different memory assigned to the members.

f. Define a recursion as follows:

 void foo(int j){

 j--;

 if(j >0) foo(j);

 }

 Recursion terminates when j <0.

g. 4, 5

h. Changing variables used by functions in 1 file cause

a recompilation of functions in all files.

i. A macro is a direct character substitution and it does

not understand C expressions.

2. pointer gets updated after evaluating the expression:

‘T’ (de-reference p4 and inc p4 afterwards)

‘i’ or ‘h’+1 (de-reference p4 and incr. the value)

‘s’ (p4[0]=’h’, p4[0+2]=’s’)

&phone[0] (pointer value of p2)

‘1’ (incr. pointer and de-reference it)

3.

i)

cake: nut.o batter.o frosting.o
 gcc nut.o batter.o frosting.o –o cake

nut.o: chop.c sugar.h

 gcc –c –o nut.o chop.c

batter.o: mix.c sugar.h flour.h

 gcc –c –o batter.o mix.c

frosting.o: flour.h spread.c sugar.h

 gcc –c –o frosting.o spread.c

clean:

 rm *.o

ii)

gcc –c –o batter.o mix.c

gcc –c –o frosting.o spread.c

gcc nut.o batter.o frosting.o –o cake

4.

Pseudo code for function log-error begins here:

 Form the err message by combining time_stamp and text

 Allocate buffer long enough to store err message

 Check pointer and print error if pointer ==NULL

 Store err message in buffer.

 Call function update_buffer to store pointers in a circular

buffer

 Call function print_buffer to print buffer starting from the

beginning of buffer

 Return

Pseudo code for function update_buffer begins here:

 Check to see if the pointer array slot is empty

 If it is not,

 Free the msg pointer slot

 Save the new msg pointer in the present slot.

 Inc the pointer and check for wrap around.

 If it has wrapped around, set pointer =0

Pseudo code for function print_buffer begins here:

 Starting from 0 to the end of the buffer, print the lines

University of Massachusetts - Boston Dr. Ronald Cheung

Programming in C CS 240 - Spring 2011

 4 out of 2

/* Exam 2 - Error Logging program starts

here

main - for testing error_log

 function

error_log - to log MAX_BUFFER error

 messages

update_buffer - insert new error messages

 in buffer

print_buffer - print all MAX_BUFFER lines

*/

#include <stdio.h>

#define MAXLINE 100

#define MAX_BUFFER 50

int new_index;

char * ptr_array[MAX_BUFFER];

void update_buffer(char * new);

int log_error(int , char *);

void print_buffer(void);

main()

{

 int time_stamp=0;

 char line[MAXLINE];

/* input line has format: time_stamp

Message */

 while(scanf("%d %s",&time_stamp,

 line)!=EOF)

 {

 if (log_error(time_stamp, line) ==0)

 printf("memory allocation error\n");

 }

}

/* function to log error messages

 return 0 if function fails */

int log_error(int ts, char *msg_ptr)

{

 char temp[MAXLINE];

 char *ptr;

/* form the message and store in a buffer */

 sprintf(temp, "%d %s",ts,msg_ptr);

/* allocate buffer: add 1 byte for '\0'*/

 ptr = (char *) malloc(strlen(temp)+1);

 if (ptr == NULL){

 printf("no more memory\n");

 return 0;

 }

 else{

 strcpy(ptr,temp);

 update_buffer(ptr);

 print_buffer();

 return 1;

 }

 }

/* code to print error messages starting

 from the beginning */

void print_buffer(void)

{

 int i, temp_new_index;

 temp_new_index = new_index;

 for (i = 0; i < MAX_BUFFER; i++){

 if(ptr_array[temp_new_index] != NULL)

 printf("%s\n",

 ptr_array[temp_new_index]);

 temp_new_index =(temp_new_index +1)%

 MAX_BUFFER;

 }

}

/* function to update the buffer with new

 error messages */

void update_buffer(char * new)

{

 if(ptr_array[new_index] != NULL)

 {

 free(ptr_array[new_index]);

 ptr_array[new_index] = NULL;

 }

 ptr_array[new_index] = new;

 new_index ++;

 if (new_index >= MAX_BUFFER)new_index= 0;

}

