Depth-First Search

CS 624 — Analysis of Algorithms

April 26, 2024

Ryan Culpepper

Depth-First Search (DFS)

» DFS scans a graph (directed or undirected) G = (V,E).
Unlike BFS, no source vertex given!
» Adds 2 “timestamps” to each vertex, integers in [1 .. 2|V|].
> d[v] = discovery time (v turns from White to Gray)
> f[v] = finishing time (v turns from Gray to Black)
» 7[v] = predecessor of v; a vertex u such that v was discovered
during the scan of u’s adjacency list
» Uses the same coloring scheme for vertices as BFS.

» The key mechanisms in this algorithm are the timestamps and a
stack (implicit in the structure of recursive calls).

Ryan Culpepper

The DFS Algorithm

Algorithm 1 DFS(G)

Y
(@]

Y PN QTR wWN 2

: for eachu € V|G| do
color[u| + White
m(u] < NIL

end for

: time < 0

: for each u € V[G] do
if color[u] = White then

DFS-Visit(u)

end if

: end for

Algorithm 2 DFS-Visit(u)

1

=S a2
N

QLY XN QU R WN

color[u] < Gray
time < time + 1
d[u] < time
for each v € Adj[u| do
if color[v] = White then
wv] +—u
DFS-Visit(v)
end if
end for
color[u] + Black

: time <+ time + 1
: flu].time < time 4+ 1

Ryan Culpepper

&
o
£
©
x

Qi

The DFS Algorithm

o
g

®
l
O

u
e
|
x

)
|
O

> 0
g

@—0
L]
0—0

u
e
e |

xT

&
o
£
©
x

Qi

The DFS Algorithm

&
o
£
©
x

Qi

The DFS Algorithm

@
o
£
T
X

Ll

|
£
=
=
=
(@)

o0
<
(p]
[
()
(D)

e
—

-
o
=%
o
[

L
=

O
=
©
>

&

The DFS Algorithm - Runtime and Properties

» The loops on lines 1-2 & 5-7 take O(V) time, excluding time to
execute DFS-Visit.

> DFS-Visit is called once for each white vertex v € V when it's
painted gray the first time.

» Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of
executing DFS-Visit is 3~ cy a4 = ©(E).
» Total running time of DFSis ©(V + E).

Ryan Culpepper

The Parenthesis Theorem

Theorem (Parenthesis Theorem, Alternative Version)

Let G = (V,E) and let u,v € V and suppose d[u] < d[v] after DFS.
Then exactly one of the following cases holds:

1. dlu] < fu] < d[v] < f[v], and neither u nor v is a descendant of
the other

2. d[u] < d[v] < f[v] < f[u], and v is a descendant of u

So dfu| < d[v] < f[u] < flv] cannot happen.
> ok: ()LL)
> Not OK: ([)1[(1])

Ryan Culpepper

The Parenthesis Theorem - Example

® 9 0 ¢
AN

/
o o9 -
C C C
xX w v u

(5 (2 (y (xx) y) (ww) 2)s) (t (vv) (un)t)

The Parenthesis Theorem

For all u, v, exactly one of the following holds:
1. du] < flu] < d[v] < flv] ord[v] < f|v] < d[u] < flu] and neither u
nor v is a descendant of the other.
2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
3. d[v] < du] < f[u] < f[v] and u is a descendant of v.

Corollary

v is a proper descendant of u iff d[u] < d[v] < f[v] < f[u].

Ryan Culpepper 13 DFS 1

The Parenthesis Theorem

| 2

| 2

If start[x] < start]y] < finish[x] then x is on the stack when y is
first reached.

Therefore the processing of y starts while x is on the stack, and
so it also must finish while x is on the stack:

we have startx] < startly] < finish[y] < finish|x|.

The case when startly| < start[x] < finish[y] is handled in the
same way.

Ol

Another way to state the parenthesis nesting property is that
given any two nodes x and y, the intervals [start[x], finish[x]] and
[start[y], finish[y]] must be either nested or disjoint.

Ryan Culpepper 13 DFS

Depth First Trees

» Predecessor subgraph defined slightly different from that of BFS.

» The predecessor subgraph of DFS is G, = (V,E,) where
E, ={(r[v],v) : v € V and n[v] # NIL}.
» How does it differ from that of BFS?

» The predecessor subgraph G, forms a depth-first forest
composed of several depth-first trees.

» The edges in E; are called tree edges.

Definition (Forest)

An acyclic graph G that may be disconnected.

Ryan Culpepper

White Path Theorem

v is a tree descendant of u if and only if at time d[u], there is a path
u ~ v consisting of only white vertices (except for u, which was just
colored gray).

One direction: (if v is a tree descendant of » then there is a white
path u ~ v at time d[u]) is obvious from the definition of a tree
descendant (see the parenthesis theorem). O

Ryan Culpepper 13 DFS U

White Path Theorem

Cont. — Reverse Direction.

» Is it possible that v is not a descendant of u in the DFS forest?

» By induction on all the vertices along the path: Of course u is a
descendant of itself.

> Let us pick any vertex p on the path other than the first vertex u,
and let g be the previous vertex on the path (so it can be that
q =u).

» We assume that all vertices along the path from u to ¢ inclusive
are descendants of u (inductive hypothesis).

» We will argue that p is also a descendant of u.

Ryan Culpepper

White Path Theorem

Cont. — Reverse Direction.

> At time d[u] vertex p is white [by assumption about the white
path], so d[u] < d[p].

» But there is an edge from g to p, so ¢ must explore this edge
before finishing.

> At the time when the edge is explored, p can be:

» WHITE, then p becomes a descendant of ¢, and so of .

» BLACK, then f[p] < f[q] [because f[p] must have already been
assigned by that time, while f[q] will get assigned later].

» But since g is a descendant of u [not necessarily proper],
fla] < flu], we have d[u] < d[p] < fp] < flq] < f[u], and we can
use the Parenthesis Theorem to conclude that p is a descendant
of u.

Ryan Culpepper

White Path Theorem

Cont. — Reverse Direction.

> GRAY, then p is already discovered, while ¢ is not yet finished, so
dlp] < flql.

» Since q is a descendant of u [not necessarily proper], by the
Parenthesis Theorem, flq] < f[u].

» Hence d[u] < d[p] < flq] < f[u]. So d[p] belongs to the set
{d[u],...,f[u]}, and so we can use the the Parenthesis Theorem
again to conclude that p must be a descendant of u.

» The conclusion thus far is that p is a descendant of u. Now, as
long as there is a vertex on the remainder of the path from p to
v, we can repeatedly apply the inductive argument, and finally
conclude that the vertex v is a descendant of u, too.

Ryan Culpepper

Classification of Edges

> Tree edge: in the depth-first forest. Found by exploring (u,v).

» Back edge: (u,v), where u is a descendant of v (in the depth-first
tree).

> Forward edge: (u,v), where v is a descendant of u, but (u,v) is
not a tree edge.

> Cross edge: any other edge. Can go between vertices in same
depth-first tree or in different depth-first trees.

Edge type for edge (u,v) can be identified when it is first explored by
DFS based on the color of v.

White — tree edge. Gray — back edge.
Black — forward or cross edge.

Ryan Culpepper

Classification of Edges

@_
l i 'C/
@«-—@«-—@«-—

The edge x — z is discovered when exploring z, so it is a back edge.

Ryan Culpepper

Classification of Edges

1

o

In DFS of an undirected graph, we get only tree and back edges. No
forward or cross edges.

Starting from 1, either 2 discovers 3 or vice versa, therefore one of
them is the other’s descendant, Hence no cross edges.

Ryan Culpepper 13 DFS

Directed Acyclic Graph (DAG)

» DAG - Directed graph with no cycles.

» Good for modeling processes and structures that have a partial
order:

» a>bandb>c=a>c.
» But may have a and b such that neithera > b nor b > a.

» Can always make a total order (either a > b or b > a for all
a # b) from a partial order.

Ryan Culpepper

Directed Acyclic Graph (DAG) - Example

& ©
00 &

’ Sweater

9,0
O-D®

Ryan Culpepper

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

= Show that back edge — cycle:

Suppose there is a back edge (u,v). Then v is ancestor of u in
depth-first forest. Therefore, there isa pathv ~ u,sov ~u ~visa
cycle. Ol

@T T T

Ryan Culpepper 13 DFS pXx}

Characterizing a DAG

=-: Show that a cycle implies a back edge.
» c:cycleinG, u: first vertex discovered in c, (v, u) : preceding
edgeinc.
» At time d[v], vertices of ¢ form a white path u ~ v. Why?

» By white-path theorem, v is a descendent of u in depth-first
forest.

» Therefore, (v,u) is a back edge. 0

T T T
)

Ryan Culpepper

Topological Sorting

> We want to “sort” a DAG.
» Think of original DAG as a partial order.
» We want a total order that extends this partial order.

(@D—()
© ©

Ryan Culpepper 13 DFS

Topological Sorting

» Performed on a DAG.

» Linear ordering of the vertices of G such that if (u,v) € E, then u
appears somewhere before v.

TopologicalSort(G)
1. call DFS(G) to compute finishing times f[v] forallv € V
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices (with decreasing finish times)

Runtime - O(V +E)

Ryan Culpepper

Topological Sorting - Example

el BN
: e ?

Linked list: Linked list:

Ryan Culpepper

Topological Sorting - Example

Linked list: Linked list:

@) UH—@9

F n F

Ryan Culpepper

Topological Sorting - Example

A B D A B D
C E C E
Linked list: Linked list:

- UH—@9

D F n I

Topological Sorting - Example

Linked list: Linked list:

ooe 4

R C n I

Ryan Culpepper

Topological Sorting - Example

A B D A B D
C E C E
Linked list: Linked list:

R e D o) A R ¢ n R

Ryan Culpepper

Topological Sorting — Proof of Correctness

| 2
>
>
>

vVvvyVvVvVvyyypy

Just need to show if (u,v) € E, then f[v] < f[u].

When we explore (u,v) then u is gray. What is the color of v?

Is v gray?

No, because then v would be ancestor of u. = (u,v) is a back
edge, which contradicts the fact that A DAG has no back edges.

Is v white?

Then becomes descendant of u.

By parenthesis theorem, d[u] < d[v] < f[v] < f[u].

Is v black?

Then v is already finished.

Since we're exploring (u,v), we have not yet finished u.
Therefore, f[v] < f[u].

Ryan Culpepper

Strongly Connected Components

» G is strongly connected if every pair (u, v) of vertices in G is
reachable from one another.

» A strongly connected component (SCC) of G is a maximal set of
vertices C C V such that for all u,v € C, there is a path from u to
v and from v to u.

()

m\/{\
ngo\

Ryan Culpepper

GS¢CisaDAG

Let C and C’ be distinct SCC's in G, let u, v € C,u’,v’ € C’, and suppose
there is a path u ~ u’ in G. Then there cannot also be a path v’ ~ v in
G

» Suppose there is a path from v’ tovin G.
» Then there are paths from u to u’ to v’ and from v’ tovto u in G.

» Therefore, u and v’ are reachable from each other, so they are
not in separate SCC's.

Ryan Culpepper 13 DFS 34

Transpose of a Directed Graph

» GT =transpose of directed G.

» GT = (V,ET),E" = (u,v) : (v,u) €E.

» GT is G with all edges reversed.

» Can create GT in ©(V + E) time if using adjacency lists.
>

G and GT have the same SCC’s. (u and v are reachable from each
other in G if and only if reachable from each other in GT).

Ryan Culpepper

Algorithm to Determine SCC

1. Call DFS(G) to compute finishing times f [u] for all u
2. Compute GT

3. Call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

4. Output the vertices in each tree of the depth-first forest formed
in second DFS as a separate SCC

Runtime - ©(V + E)

Ryan Culpepper

Example

G
a b @ d
3/1 1/1 @! {8/9
/ G| D
e f g h

Ryan Culpepper

GT

b c d

?/ e O

Example

abe

cd

Ryan Culpepper

How Does it Work?

> |dea:

> By considering vertices in second DFS in decreasing order of
finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.
»> Because we are running DFS on GT, we will not be visiting any v
from a u, where v and u are in different components.
> Notation:

» d[u] and flu] always refer to first DFS.

» Extend notation for d and f to sets of vertices U C V:
» d(U) = min,ey{d[u]} (earliest discovery time)

> f(U) = max,cp{f[u]} (latest finishing time)

Ryan Culpepper

SCCs and DFS finishing times

Lemma

Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u,v) € E such thatu € Candv € C'. Then f(C) > f(C’).

Case 1: d(C) < d(C").

> Let x be the first vertex discovered in C.

C (e}
> At time d[x], all vertices in Cand C’ are
unvisited. Thus, there exist paths of
unvisited vertices from x to all vertices in C O 0)
and C'. u v
» All vertices in C and C' are descendants of x
in depth-first tree. (x)

> Therefore, f[x] = f(C) > f(C’).

O

Ryan Culpepper

SCCs and DFS finishing times

Lemma

Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u,v) € Esuchthatu € Candv € C'. Then f(C) > f(C’).

Case 2: d(C) > d(C").

> Lety be the first vertex discovered in C. © ¢

> At time d[y], all vertices in C’" are unvisited
and there is an unvisited path fromy to each ® P
vertex in C” all vertices in C' become s e
descendants of y. Again, f [y] = f(C").

> At time d[y], all vertices in C are also —x——\ O
unvisited. Y

0

Ryan Culpepper

SCCs and DFS finishing times

Lemma

Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u,v) € Esuchthatu € Candv € C'. Then f(C) > f(C’).

Case 2: d(C) > d(C").

> By earlier lemma, since there is an edge (u,

C C

v), we cannot have a path from C' to C.

> So no vertex in Cis reachable from y. ® ®

» Therefore, at time fly], all vertices in C are u v
still white.

> Therefore, for allw € C, f[w] > f[y], which —x—\ O
implies that £(C) > £(C). Y

]

Ryan Culpepper

SCCs and DFS finishing times

Corollary

Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u,v) € ET, whereu € C and v € C'. Then f(C) < f(C").

(u,v) € ET = (v,u) € E. Since SCC's of G and GT are the same,
f(C") > f(C), by former Lemma. O

Ryan Culpepper 13 DFS Lty

Correctness of SCC

» When we do the second DFS, on G7, start with SCC C such that
f(C) is maximum.

» The second DFS starts from some x € C, and it visits all vertices
in C.

» Corollary above says that since f(C) > f(C’) for all C # C’, there
are no edges from Cto C' in GT.

» Therefore, DFS will visit only vertices in C.

» Which means that the depth-first tree rooted at x contains
exactly the vertices of C.

Ryan Culpepper

Correctness of SCC

>

>

v

The next root chosen in the second DFS is in SCC C’ such that
f(C') is maximum over all SCC’s other than C.

DFS visits all vertices in C, but the only edges out of C' go to C,
which we’ve already visited.

Therefore, the only tree edges will be to vertices in C.
We can continue the process.

Each time we choose a root for the second DFS, it can reach only
vertices in its SCC-get tree edges to these,

Vertices in SCC's already visited in second DFS-get no tree edges
to these.

Ryan Culpepper

