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Depth-First Search (DFS)

▶ DFS scans a graph (directed or undirected) G = (V ,E).
Unlike BFS, no source vertex given!

▶ Adds 2 “timestamps” to each vertex, integers in [1 .. 2|V |].
▶ d[v] = discovery time (v turns from White to Gray)
▶ f [v] = finishing time (v turns from Gray to Black)

▶ π[v] = predecessor of v; a vertex u such that v was discovered
during the scan of u’s adjacency list

▶ Uses the same coloring scheme for vertices as BFS.
▶ The key mechanisms in this algorithm are the timestamps and a

stack (implicit in the structure of recursive calls).
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The DFS Algorithm

Algorithm 1 DFS(G)

1: for each u ∈ V [G] do
2: color[u]← White
3: π[u]← nil
4: end for
5: time← 0
6: for each u ∈ V [G] do
7: if color[u] = White then
8: DFS-Visit(u)
9: end if

10: end for

Algorithm 2 DFS-Visit(u)
1: color[u]← Gray
2: time← time + 1
3: d[u]← time
4: for each v ∈ Adj[u] do
5: if color[v] = White then
6: π[v]← u
7: DFS-Visit(v)
8: end if
9: end for

10: color[u]← Black
11: time← time + 1
12: f [u].time← time + 1
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The DFS Algorithm – Example
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The DFS Algorithm – Example
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The DFS Algorithm – Example
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The DFS Algorithm – Example
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The DFS Algorithm – Runtime and Properties

▶ The loops on lines 1-2 & 5-7 take Θ(V) time, excluding time to
execute DFS-Visit.

▶ DFS-Visit is called once for each white vertex v ∈ V when it’s
painted gray the first time.

▶ Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of
executing DFS-Visit is

∑
v∈V |Adj[v]| = Θ(E).

▶ Total running time of DFS is Θ(V + E).
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The Parenthesis Theorem

Theorem (Parenthesis Theorem, Alternative Version)

Let G = (V ,E) and let u, v ∈ V and suppose d[u] < d[v] after DFS.
Then exactly one of the following cases holds:

1. d[u] < f [u] < d[v] < f [v], and neither u nor v is a descendant of
the other

2. d[u] < d[v] < f [v] < f [u], and v is a descendant of u

So d[u] < d[v] < f [u] < f [v] cannot happen.
▶ OK: ( ) [ ] ( [ ] ) [ ( ) ]
▶ Not OK: ( [ ) ] [ ( ] )
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The Parenthesis Theorem – Example
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The Parenthesis Theorem

Theorem
For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u
nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.
3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

Corollary

v is a proper descendant of u iff d[u] < d[v] < f [v] < f [u].
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The Parenthesis Theorem

Proof.

▶ If start[x] < start[y] < finish[x] then x is on the stack when y is
first reached.

▶ Therefore the processing of y starts while x is on the stack, and
so it also must finish while x is on the stack:

▶ we have start[x] < start[y] < finish[y] < finish[x].
▶ The case when start[y] < start[x] < finish[y] is handled in the

same way.

▶ Another way to state the parenthesis nesting property is that
given any two nodes x and y, the intervals [start[x], finish[x]] and
[start[y], finish[y]] must be either nested or disjoint.
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Depth First Trees

▶ Predecessor subgraph defined slightly different from that of BFS.
▶ The predecessor subgraph of DFS is Gπ = (V ,Eπ) where

Eπ = {(π[v], v) : v ∈ V and π[v] ̸= NIL}.
▶ How does it differ from that of BFS?
▶ The predecessor subgraph Gπ forms a depth-first forest

composed of several depth-first trees.
▶ The edges in Eπ are called tree edges.

Definition (Forest)

An acyclic graph G that may be disconnected.
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White Path Theorem

Theorem
v is a tree descendant of u if and only if at time d[u], there is a path
u⇝ v consisting of only white vertices (except for u, which was just
colored gray).

Proof.
One direction: (if v is a tree descendant of u then there is a white
path u⇝ v at time d[u]) is obvious from the definition of a tree
descendant (see the parenthesis theorem).
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White Path Theorem

Cont. – Reverse Direction.

▶ Is it possible that v is not a descendant of u in the DFS forest?
▶ By induction on all the vertices along the path: Of course u is a

descendant of itself.
▶ Let us pick any vertex p on the path other than the first vertex u,

and let q be the previous vertex on the path (so it can be that
q = u).

▶ We assume that all vertices along the path from u to q inclusive
are descendants of u (inductive hypothesis).

▶ We will argue that p is also a descendant of u.
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White Path Theorem

Cont. – Reverse Direction.

▶ At time d[u] vertex p is white [by assumption about the white
path], so d[u] < d[p].

▶ But there is an edge from q to p, so q must explore this edge
before finishing.

▶ At the time when the edge is explored, p can be:
▶ WHITE, then p becomes a descendant of q, and so of u.
▶ BLACK, then f [p] < f [q] [because f [p] must have already been

assigned by that time, while f [q] will get assigned later].
▶ But since q is a descendant of u [not necessarily proper],

f [q] ≤ f [u], we have d[u] < d[p] < f [p] < f [q] ≤ f [u], and we can
use the Parenthesis Theorem to conclude that p is a descendant
of u.
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White Path Theorem

Cont. – Reverse Direction.

▶ GRAY, then p is already discovered, while q is not yet finished, so
d[p] < f [q].

▶ Since q is a descendant of u [not necessarily proper], by the
Parenthesis Theorem, f [q] ≤ f [u].

▶ Hence d[u] < d[p] < f [q] ≤ f [u]. So d[p] belongs to the set
{d[u], . . . , f [u]}, and so we can use the the Parenthesis Theorem
again to conclude that p must be a descendant of u.

▶ The conclusion thus far is that p is a descendant of u. Now, as
long as there is a vertex on the remainder of the path from p to
v, we can repeatedly apply the inductive argument, and finally
conclude that the vertex v is a descendant of u, too.
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Classification of Edges

▶ Tree edge: in the depth-first forest. Found by exploring (u, v).
▶ Back edge: (u, v), where u is a descendant of v (in the depth-first

tree).
▶ Forward edge: (u, v), where v is a descendant of u, but (u, v) is

not a tree edge.
▶ Cross edge: any other edge. Can go between vertices in same

depth-first tree or in different depth-first trees.
Edge type for edge (u, v) can be identified when it is first explored by
DFS based on the color of v.
White→ tree edge. Gray→ back edge.
Black→ forward or cross edge.
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Classification of Edges

x w v u

y z s t

4/5 7/8 12/13 14/15
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The edge x→ z is discovered when exploring z, so it is a back edge.
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Classification of Edges

2 3

1

Theorem
In DFS of an undirected graph, we get only tree and back edges. No
forward or cross edges.

Starting from 1, either 2 discovers 3 or vice versa, therefore one of
them is the other’s descendant, Hence no cross edges.
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Directed Acyclic Graph (DAG)

▶ DAG – Directed graph with no cycles.
▶ Good for modeling processes and structures that have a partial

order:
▶ a > b and b > c⇒ a > c.
▶ But may have a and b such that neither a > b nor b > a.
▶ Can always make a total order (either a > b or b > a for all

a ̸= b) from a partial order.
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Directed Acyclic Graph (DAG) – Example
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Characterizing a DAG

Lemma
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof.
⇒ Show that back edge→ cycle:
Suppose there is a back edge (u, v). Then v is ancestor of u in
depth-first forest. Therefore, there is a path v⇝ u, so v⇝ u⇝ v is a
cycle.

u v
T T T

B
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Characterizing a DAG

Proof.
⇒: Show that a cycle implies a back edge.
▶ c : cycle in G, u : first vertex discovered in c, (v, u) : preceding

edge in c.
▶ At time d[v], vertices of c form a white path u⇝ v. Why?
▶ By white-path theorem, v is a descendent of u in depth-first

forest.
▶ Therefore, (v,u) is a back edge.

u v
T T T

B
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Topological Sorting
▶ We want to “sort” a DAG.
▶ Think of original DAG as a partial order.
▶ We want a total order that extends this partial order.

a b

c

d

e

a b c d e
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Topological Sorting

▶ Performed on a DAG.
▶ Linear ordering of the vertices of G such that if (u, v) ∈ E, then u

appears somewhere before v.

TopologicalSort(G)
1. call DFS(G) to compute finishing times f[v] for all v ∈ V
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices (with decreasing finish times)

Runtime – Θ(V + E)
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Topological Sorting – Example
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Topological Sorting – Example
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Topological Sorting – Example
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Topological Sorting – Example
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Topological Sorting – Example
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Topological Sorting – Proof of Correctness

▶ Just need to show if (u, v) ∈ E, then f [v] < f [u].
▶ When we explore (u,v) then u is gray. What is the color of v?
▶ Is v gray?
▶ No, because then v would be ancestor of u. ⇒ (u, v) is a back

edge, which contradicts the fact that A DAG has no back edges.
▶ Is v white?
▶ Then becomes descendant of u.
▶ By parenthesis theorem, d[u] < d[v] < f [v] < f [u].
▶ Is v black?
▶ Then v is already finished.
▶ Since we’re exploring (u,v), we have not yet finished u.
▶ Therefore, f [v] < f [u].
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Strongly Connected Components

▶ G is strongly connected if every pair (u, v) of vertices in G is
reachable from one another.

▶ A strongly connected component (SCC) of G is a maximal set of
vertices C ⊆ V such that for all u, v ∈ C, there is a path from u to
v and from v to u.
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GSCCisaDAG

Theorem
Let C and C’ be distinct SCC’s in G, let u, v ∈ C,u′, v′ ∈ C′, and suppose
there is a path u⇝ u′ in G. Then there cannot also be a path v′ ⇝ v in
G.

Proof.

▶ Suppose there is a path from v’ to v in G.
▶ Then there are paths from u to u’ to v’ and from v’ to v to u in G.
▶ Therefore, u and v’ are reachable from each other, so they are

not in separate SCC’s.
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Transpose of a Directed Graph

▶ GT = transpose of directed G.
▶ GT = (V ,ET),ET = (u, v) : (v,u) ∈ E.
▶ GT is G with all edges reversed.
▶ Can create GT in Θ(V + E) time if using adjacency lists.
▶ G and GT have the same SCC’s. (u and v are reachable from each

other in G if and only if reachable from each other in GT).
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Algorithm to Determine SCC

1. Call DFS(G) to compute finishing times f [u] for all u
2. Compute GT

3. Call DFS(GT), but in the main loop, consider vertices in order of
decreasing f [u] (as computed in first DFS)

4. Output the vertices in each tree of the depth-first forest formed
in second DFS as a separate SCC

Runtime – Θ(V + E)
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Example

G

e f g h

a b c d
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Example

GT

e f g h

a b c d
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Example

h
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fg
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How Does it Work?

▶ Idea:
▶ By considering vertices in second DFS in decreasing order of

finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

▶ Because we are running DFS on GT, we will not be visiting any v
from a u, where v and u are in different components.

▶ Notation:
▶ d[u] and f[u] always refer to first DFS.
▶ Extend notation for d and f to sets of vertices U ⊆ V :
▶ d(U) = minu∈U{d[u]} (earliest discovery time)
▶ f (U) = maxu∈U{f [u]} (latest finishing time)
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SCCs and DFS finishing times

Lemma
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) ∈ E such that u ∈ C and v ∈ C′. Then f (C) > f (C′).

Case 1: d(C) < d(C′).

▶ Let x be the first vertex discovered in C.
▶ At time d[x], all vertices in C and C’ are

unvisited. Thus, there exist paths of
unvisited vertices from x to all vertices in C
and C’.

▶ All vertices in C and C’ are descendants of x
in depth-first tree.

▶ Therefore, f [x] = f (C) > f (C′).

C C’

x

u v
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SCCs and DFS finishing times

Lemma
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) ∈ E such that u ∈ C and v ∈ C′. Then f (C) > f (C′).

Case 2: d(C) > d(C′).

▶ Let y be the first vertex discovered in C’.
▶ At time d[y], all vertices in C’ are unvisited

and there is an unvisited path from y to each
vertex in C” all vertices in C’ become
descendants of y. Again, f [y] = f (C’).

▶ At time d[y], all vertices in C are also
unvisited.

C C’

y

u v

×
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SCCs and DFS finishing times

Lemma
Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) ∈ E such that u ∈ C and v ∈ C′. Then f (C) > f (C′).

Case 2: d(C) > d(C′).

▶ By earlier lemma, since there is an edge (u,
v), we cannot have a path from C’ to C.

▶ So no vertex in C is reachable from y.
▶ Therefore, at time f[y], all vertices in C are

still white.
▶ Therefore, for all w ∈ C, f [w] > f [y], which

implies that f (C) > f (C′).

C C’

y

u v

×
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SCCs and DFS finishing times

Corollary

Let C and C’ be distinct SCC’s in G = (V, E). Suppose there is an edge
(u, v) ∈ ET , where u ∈ C and v ∈ C′. Then f (C) < f (C′).

Proof.
(u, v) ∈ ET ⇒ (v,u) ∈ E. Since SCC’s of G and GT are the same,
f (C′) > f (C), by former Lemma.
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Correctness of SCC

▶ When we do the second DFS, on GT , start with SCC C such that
f(C) is maximum.

▶ The second DFS starts from some x ∈ C, and it visits all vertices
in C.

▶ Corollary above says that since f (C) > f (C′) for all C ̸= C′, there
are no edges from C to C’ in GT .

▶ Therefore, DFS will visit only vertices in C.
▶ Which means that the depth-first tree rooted at x contains

exactly the vertices of C.
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Correctness of SCC

▶ The next root chosen in the second DFS is in SCC C’ such that
f(C’) is maximum over all SCC’s other than C.

▶ DFS visits all vertices in C’, but the only edges out of C’ go to C,
which we’ve already visited.

▶ Therefore, the only tree edges will be to vertices in C’.
▶ We can continue the process.
▶ Each time we choose a root for the second DFS, it can reach only

vertices in its SCC–get tree edges to these,
▶ Vertices in SCC’s already visited in second DFS–get no tree edges

to these.
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