
Computer Networks 176 (2020) 107286

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Revenue sharing in edge-cloud systems: A Game-theoretic perspective

Zhi Cao

a , Honggang Zhang

b , ∗ , Benyuan Liu

c , Bo Sheng

a

a Computer Science Department, Umass Boston, Boston, MA, 02125 United States
b Engineering Department, Umass Boston, Boston, MA 02125 United States
c Department of Computer Science, Umass Lowell, Lowell, MA, 01854 United States

a r t i c l e i n f o

Keywords:

Edge computing

Revenue sharing mechanisms

Shapley value

Nash equilibrium

a b s t r a c t

We explore the design of revenue sharing mechanisms for an Edge-Cloud computing system from a game-theoretic

perspective. Different from traditional cloud computing, the providers in an Edge-Cloud system are independent

and self-interested. The system adopts a task distribution mechanism to maximize the total revenue received

from clients and employs a revenue sharing mechanism to split the received revenue among service providers.

Under system-level mechanisms, service providers game with the system in order to maximize their own utilities

by strategically allocating their resources. We introduce a game-theoretic framework to model the competition

among the service providers as a non-cooperative game. We show the existence of Nash equilibrium in the

game theoretically and experimentally. We find that at Nash equilibria, the revenue sharing design based di-

rectly on actual contributions of service providers results in significantly worse system-level performance than

revenue sharing mechanisms based on marginal contributions. We find that the reason for this seemingly counter-

intuitive result is that revenue sharing mechanisms based on marginal contributions discourage providers with

less powerful resources from contributing resources to the system at equilibrium state. Our framework offers an

economics approach to the understanding of Edge-Cloud systems and provides fundamental insights into their

revenue sharing design.

1

w

b

o

i

c

a

s

f

v

a

c

a

a

t

a

t

fi

t

r

s

t

i

r

c

t

o

c

t

t

t

t

t

i

s

t

N

p

s

o

h

R

A

1

. Introduction

Edge computing [1–4] is a promising computing paradigm that

ill meet the service requirements of the latency-sensitive and/or

andwidth-hungry applications brought by the rapid growing Internet

f Things (IoT) and Artificial Intelligence (AI) systems. In this paper we

nvestigate Edge-Cloud system, a type of edge computing system where

omputation service providers at the edge of the Internet (referred to

s edge service providers or edge providers , which are close to IoT sen-

ors, mobile devices, and end users) and the providers at the cloud (re-

erred to as cloud service providers or cloud providers) collectively pro-

ide computing services to the clients at the edge. A service provider is

lso referred to as a resource provider in the paper as we focus on the

omputation servers offered by the provider.

Different from a traditional cloud computing environment in which

ll servers are organized in data centers and tightly controlled and man-

ged by a provider, the various service providers in an Edge-Cloud sys-

em are independent and located at various distances away from clients,

nd they make independent decisions on the computation resources that

hey provide to the system. In order to achieve a high system-level ef-

ciency, an Edge-Cloud system adopts a task distribution mechanism

o maximize the total revenue received from clients, and it employs a
∗ Corresponding author.

E-mail addresses: Zhi.Cao001@umb.edu (Z. Cao), Honggang.Zhang@umb.edu (H.

ttps://doi.org/10.1016/j.comnet.2020.107286

eceived 14 August 2019; Received in revised form 6 April 2020; Accepted 27 April

vailable online 4 May 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
evenue sharing mechanism to fairly split its received revenue among

ervice providers.

Under system-level mechanisms, the providers of an Edge-Cloud sys-

em are likely to compete with each other and game with the system

n order to maximize their own utilities by strategically adjusting the

esources that they offer to the system. A provider may increase or de-

rease the amount of computation servers placed in the system, in order

o increase its utility (e.g., a profit calculated as received value minus

peration cost) under the current system-level mechanisms that allo-

ate computation jobs (of clients or edge users) to servers and distribute

he total values received (from edge users) to the providers that own

he servers. For example, with complete information of the whole sys-

em (including all other providers’ servers, job arrival information, and

he details of system-level mechanisms), a provider P1 can find its op-

imal number of servers to be placed into the system in order to max-

mize its profit. Since obtaining complete information is nearly impos-

ible in practice, P1 can find an estimated optimal number of servers

hat it should place in the system through learning from history data.

ote that the optimal number of servers of P1 is a function of other

roviders’ current numbers of servers placed in the system and other

ystem state information. Once P1 deploys its current optimal number

f servers in the system, another provider P2 may change its number
 Zhang), bliu@cs.uml.edu (B. Liu), Bo.Sheng@umb.edu (B. Sheng).

2020

https://doi.org/10.1016/j.comnet.2020.107286
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107286&domain=pdf
mailto:Zhi.Cao001@umb.edu
mailto:Honggang.Zhang@umb.edu
mailto:bliu@cs.uml.edu
mailto:Bo.Sheng@umb.edu
https://doi.org/10.1016/j.comnet.2020.107286

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

o

a

n

t

o

t

t

i

t

u

d

n

t

i

a

i

t

i

s

a

w

i

w

i

t

i

i

t

n

F

p

s

o

s

(

u

s

t

m

C

i

m

fi

S

2

2

p

e

p

c

a

i

t

t

w

l

e

[

p

g

[

b

i

t

t

n

e

F

e

n

[

T

a

b

w

s

l

i

a

t

p

f servers in order to maximize its own profit as the numbers of P1’s

nd other providers’ servers may make P2’s current number of servers

o longer optimal. Once P2 changes its number of servers, P1 may need

o find a new optimal solution based on the updated number of servers

f P2. The competition between P1 and P2 is shown in the process of

heir repeatedly adjusting their own optimal numbers of servers respec-

ively. A similar and more complicated competition process can happen

n a system where there may be more than two providers that attempt

o maximize their utilities by updating their number of servers, and the

pdating of different providers may happen asynchronously and in a

istributed fashion. Furthermore, since providers keep changing their

umbers of servers offered to the system as a result of their optimiza-

ion processes aforementioned, the system needs to constantly adjust

ts job distribution and revenue sharing/splitting in order to maintain

 high overall system-level performance. Therefore the pursuit of max-

mal profit or utility by the providers may lead to a competition among

hemselves. Furthermore, the self-interested behaviors of the providers

n the system might result in an inefficient system state with low overall

ystem performance, as their individual self-interested objectives (e.g.,

 provider tries to maximize its own utility) do not collectively align

ith system-wide objectives (e.g., to maximize the overall system util-

ty). Therefore, it is important to choose a system-level mechanism that

ill minimize the loss of system-wide efficiency in the face of the self-

nterested behaviors of the providers.

Since edge computing is a new computing paradigm, both indus-

ry and academia are exploring various design options of edge comput-

ng systems. We believe that the system model proposed in this paper

s well suited for edge computing applications, and it can be realized

hrough the recent advances in container technologies (such as Kuber-

etes [5] and Docker [6]) and IoT data management platform (e.g.,

ogLAMP [7]). These state-of-art technologies make it feasible to de-

loy an edge system that relies on computing resources from various

ources at edge or from cloud, and to meet the computation demands

f the users distributed at the edge of the Internet. Since service or re-

ource providers in a distributed edge system compete with each other

as described before), a non-cooperative game-theoretic model is a nat-

ral modeling choice that can be used to investigate the system.

In this paper, we take a game-theoretic approach to explore the de-

ign of revenue sharing mechanisms for an Edge-Cloud system, in order

o improve its system-wide efficiency. Our major contributions are sum-

arized below.

1. We introduce a game-theoretic framework to investigate an Edge-

Cloud computing system that consists of edge service providers

and cloud service providers. The service providers (including

edge and cloud providers) play a non-cooperative game among

themselves. They offer their computing servers to the system

which then allocates the servers optimally to execute the compu-

tation jobs submitted by clients or end users. We first show the-

oretically and experimentally the existence of Nash equilibrium

in the game between edge and cloud providers, under three rev-

enue sharing mechanisms (Shapley value sharing [8] , Ortmann

proportional sharing [9] , and Direct-contribution-based sharing),

and across a wide range of system/networking settings. Our find-

ings demonstrate that different revenue sharing mechanisms can

result in drastically different system-level utility loss at system

equilibrium states when compared with maximum system utility

(which is achieved when providers do not game with the system).

Thus, it is crucially important to design an appropriate revenue

sharing mechanism in order to maintain high system-level effi-

ciency in the face of service providers’ self-interested behaviors.

2. We find that at the Nash equilibria of the game, revenue sharing

mechanisms based on marginal contributions in general can lead

to better system performance when performed at provider level

than performed at server level. In addition, Direct-contribution-

based sharing (i.e., revenue split based directly on actual contri-
butions of servers) results in significantly worse system-level per-

formance than revenue sharing mechanisms based on marginal

contributions (i.e., Shapley sharing and Ortmann sharing). We

further show that the reason for this seemingly counter-intuitive

result is that revenue sharing based on marginal contributions

discourage providers with less powerful resources from contribut-

ing resources to the system at equilibrium state, and therefore

they can achieve significantly better system performance than

Direct-contribution-based mechanism even when self-interested

service providers attempt to game with the system for their own

maximal benefits.

3. We demonstrate that our framework is an effective economics

approach to the understanding and designing of efficient Edge-

Cloud computing systems, based on our extensive simulations

and experiments on an Edge-Cloud emulation system that we

have developed. Furthermore, we have verified our findings

through simulations based on Google cloud data trace [10] .

In the rest of the paper, we first present the architecture of an Edge-

loud system and give an overview of our game-theoretic framework

n Section 2 . Then in Sections 3 and 4 , we describe task distribution

echanisms and revenue sharing mechanisms. Section 5 presents our

ndings via experiments and simulations, and we conclude the paper in

ection 6 .

. Edge-Cloud system

.1. Background and related work

This paper studies a computing system in the emerging edge com-

uting paradigm [1–4,11–17] , which broadly includes cloudlets, mobile

dge computing, fog computing, fog networks, and mobile cloud com-

uting [14–16] . Besides the low latency benefit of edge computing, re-

ent research on Internet of Things (IoT) has shown that, by processing

t the edge the large amount of raw data collected by IoT sensors (e.g.,

n a smart home or smart city system) or human users (e.g., videos, pic-

ures taken by smartphones), edge computing can significantly reduce

he consumption of network bandwidth in wide area and core networks

hen compared with transferring raw data to a cloud [18–25] . AT &T, a

arge Internet service provider, has recently announced plans to deploy

dge computing servers in their mobile access towers on a large scale

26] .

The economics and game-theoretic approach adopted in this pa-

er is related to the existing rich literature of applying economics and

ame theory in networking research [17,27–32] . For example, Ma et al.

29] utilize the Shapley value solution to implement the profit distri-

ution mechanism to maximize the profits of ISPs. [30] studies the

ncentive structure of content delivery networks by taking a coopera-

ive game theory approach. It also utilizes the Shapley value to study

he cooperative game. In addition, besides applying Shapley value in

etworking research, some existing work focuses on the optimal rev-

nue maximization and/or revenue sharing in edge computing system.

or example, Samanta and Chang [27] study the offloading scheme in

dge computing system. Different from our paper that considers the

on-cooperative game between different providers, Samanta and Chang

27] study the overall system revenue and total services latency. Yu and

ang [28] study the problem of competition and cooperation between

n edge cloud and a remote cloud. And they formulate the interaction

etween the providers as a three-stage Stackelberg game. However, our

ork focuses on how different sharing mechanisms impact the overall

ystem efficiency at Nash equilibrium points of a game where there is no

eading player. In addition, recent work has shown that proving the ex-

stence and further finding Nash equilibria of a practical complex game

re quite challenging. For example, existing work [33–37] demonstrate

he difficulties on finding Nash equilibrium of a two-player or multiple-

layer game.

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 1. System architecture. Computing service providers compete with each

other under system-level mechanisms: task distribution and revenue sharing.

o

u

i

b

R

p

t

r

2

b

T

t

d

a

g

i

e

p

a

a

i

s

n

a

l

e

c

T

e

m

a

t

r

t

t

t

t

p

t

i

Table 1

Table of Model parameters.

Parameter Description

p player/provider p

− 𝑝 the set of all players/providers except p

n p the number of servers that player p places in the system

U p (n p) the utility function of player p

v p (n p) the revenue received by player p

f cost (n p) the cost function of a player p

ℕ 𝐽 ; N J the set of tasks; the number of tasks

ℕ 𝑆 ; N S the set of servers; the number of servers

M opt task distribution mechanism

M share revenue sharing mechanism

i; j task i ; server j

d ij the completion time of task i when it is assigned to server j

x ij the assignment of task i to server j

v i the value of task i

L i latency requirement of task i

E; C an edge provider; a cloud provider

𝜙𝑗 (ℕ 𝑆) the revenue share assigned to server j by Shapley value

mechanism

𝑣 (𝕊) the value of set 𝕊
𝜙𝑃
𝑗

the revenue share assigned to server j by Ortmann sharing

mechanism

T system time duration

𝜆 task arrival rate

f delay the function to calculate the completion time of a task

k latency ; k bw a latency factor; a bandwidth factor

h

a

o

p

w

t

p

a

c

e

p

s

n

f

2

2

d

c

j

i

E

a

b

c

i

c

d

s

t

c
The novelties introduced in this article include: (1) A novel game the-

retic model of the competition among edge and cloud service providers

nder system-level revenue sharing and task distribution mechanisms

n an edge-cloud system; (2) The existence of Nash equilibrium or sta-

le system state in the game of the competition among providers; (3)

evenue sharing mechanism based on marginal contributions is more

referable over sharing mechanism based on direct contributions, as

he former can result in higher system-level efficiency at the equilib-

ium states of the game.

.2. System architecture overview

An Edge-Cloud computing system is a hybrid system that integrates

oth edge computing and cloud computing to provide services to clients.

he edge computing part of the system can execute tasks at the edge of

he Internet to reduce network transmission cost of large amounts of

ata and to meet the low latency requirement of computing tasks. In

ddition, the cloud computing part of the system can provide necessary

lobal analytics and execute tasks with flexible latency requirement.

There are three types of entities in an Edge-Cloud system, as shown

n Fig. 1 . (1) Clients, including applications and end users, that are at the

dge of the Internet and submit computing tasks to the system. (2) Edge

roviders (i.e., computing service providers at the edge of the Internet

nd close to clients, and hence have high communication bandwidth

nd low propagation delay to clients), and cloud providers (providers

n the cloud that offer servers to edge clients by joining an Edge-Cloud

ystem). (3) A system manager, which is a collection of software compo-

ents that implements mechanisms/algorithms for various management

nd scheduling issues such as facilitating task submissions, revenue col-

ection from clients, revenue split among servers, accounting/auditing,

tc. The main part of the manager resides on the edge and some of its

omponents are distributed among providers throughout the Internet.

he functionalities of the manager can be distributed among multiple

dge servers to avoid single point of failure. In the system, clients com-

unicate with and submit their tasks to the system manager through

pps on their devices.

In an Edge-Cloud system, a monetary value is associated with each

ask. A system manager’s objective is to maximize its total values or

evenue received from clients via a task distribution mechanism that op-

imally assigns tasks to servers subject to the latency requirements of

hose tasks. Based on the revenue collected and the tasks completed by

he servers, the manager utilizes a revenue sharing mechanism to split

he received revenue among the servers (and hence between the service

roviders who own those servers) 1 . Therefore, an Edge-Cloud system
1 A system manager may keep a share of the total received revenue and split

he rest among servers. We assume that a system manager’s own revenue share

s negligible compared with the rest of the revenue given to servers.

t

2

s
as two basic types of mechanisms: a task distribution mechanism and

 revenue sharing mechanism. In this paper, we investigate three types

f revenue sharing mechanisms: Shapley value sharing [8] , Ortmann

roportional sharing [9] , and Direct-contribution-based sharing. They

ill be discussed in detail in Sections 3 and 4 .

In our design, the system does not have a leading provider to lead

he system. Note that various edge systems/platforms are being pro-

osed and explored in industry and academia. Certainly there may exist

n edge system with a leading provider, which is similar to a traditional

loud computing system, but a platform without a leading provider may

xist as well, and in fact, we believe that a platform without a leading

rovider will be a common type of design as it is well suitable for edge

ystems where computing resources are placed at the edge of the Inter-

et and owned by various independent parties, which is quite different

rom traditional cloud computing.

.3. A Game-Theoretic framework

.3.1. Assumptions

We assume that each service provider in an Edge-Cloud system is in-

ependent and self-interested. This assumption describes an important

haracteristic of an Edge-Cloud system: a service provider can choose to

oin an Edge-Cloud system and decides by itself the amount of comput-

ng resources it offers to the system. This characteristic differentiates an

dge-Cloud system from a traditional cloud computing system in which

ll computing resources are centrally managed and tightly controlled

y an entity and they are typically placed in data centers. A traditional

loud computing provider can also join an Edge-Cloud system by offer-

ng service to the clients in the system. Hence an Edge-Cloud system

onsists of edge providers and cloud providers.

We assume that the two types of system-level mechanisms (i.e., task

istribution and revenue sharing) are publicly known to all clients and

ervice providers. Under those mechanisms, a service provider attempts

o maximize its received benefit or utility (defined below) by strategi-

ally adjusting the computing resources it provides to the system. Note

hat the parameters of our system model are listed in Table 1 .

.3.2. The game

We model the competition among service providers in an Edge-Cloud

ystem as a non-cooperative game [38] , and the providers are players in

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

t

i

m

r

m

t

p

𝑈

w

s

n

t

t

𝑝

a

i

i

s

a

m

e

v

t

l

m

{

w

v

fi

h

t

u

c

o

e

s

t

p

a

t

t

g

b

a

t

s

m

3

3

w

l

m

t

t

t

f

l

a

3

s

u

3

b

e

t

W

s

t

d

T

L

j

t

a

t

t

c

i

r

t

o

m

𝑠

𝑥

𝑥

𝑥

𝑥

𝑞

w

s

w

d

s

s

(

𝑘

j

k

j
he game. We focus on the case where a provider’s available strategy

s to adjust the number of servers it offers to the system in order to

aximize its utility. A utility function captures the tradeoff between the

evenue and the cost of a provider. Providing more servers will incur

ore cost to a provider, even though more servers imply more revenue

hat the provider can potentially receive. Then the utility function of a

rovider p can be described as

 𝑝 (𝑛 𝑝 , 𝑛 − 𝑝) = 𝑣 𝑝 (𝑛 𝑝 , 𝑛 − 𝑝) − 𝑓 𝑐𝑜𝑠𝑡 (𝑛 𝑝 , 𝑛 − 𝑝) , (1)

here 𝑣 𝑝 (𝑛 𝑝 , 𝑛 − 𝑝) is the revenue received by provider p when placing n p
ervers in the system, and the cost f cost is an increasing function of the

umber of servers. Note that − 𝑝 denotes the set of all players except p .

Now we define a Nash equilibrium [38] for the game we study. Note

hat each player can be either an edge provider or a cloud provider in

he system. Let v p denotes the revenue received by an arbitrary player

, ∀𝑝 ∈ {1 , 2 , … , 𝑚 } . Let M opt and M share denote a task distribution mech-

nism and a revenue sharing mechanism respectively. Then we know v p
s a function of M share and M opt . Note that M opt is a function of (𝑛 𝑝 , 𝑛 − 𝑝) ,
.e., the number of servers provided by the player p and the number of

ervers of all the other players.

Each player tries to solve its own optimization problem. Player p

ttempts to solve the following optimization problem

ax
𝑛 𝑝

𝑈 𝑝 (𝑛 𝑝 , 𝑛 − 𝑝) = 𝑣 𝑝 (𝑀 𝑠ℎ𝑎𝑟𝑒 (𝑀 𝑜𝑝𝑡 (𝑛 𝑝 , 𝑛 − 𝑝))) − 𝑓 𝑐𝑜𝑠𝑡 (𝑛 𝑝) . (2)

A Nash equilibrium of the game is a particular combination of play-

rs’ strategies from which a player has no incentive to unilaterally de-

iate (i.e., it does not want to change its number of servers, given that

he other players’ numbers of servers remain unchanged), as any uni-

ateral deviation will not increase its utility. The Nash equilibrium of a

 -player game is denoted by

 𝑛 ∗ 1 , 𝑛
∗
2 , … , 𝑛 ∗

𝑝
, … , 𝑛 ∗

𝑚
} , (3)

here 𝑛 ∗
𝑝
= argmax 𝑛 𝑝 𝑈 𝑝 (𝑛 𝑝 , 𝑛 ∗ 1 , 𝑛

∗
2 , … , 𝑛 ∗

𝑝 −1 , 𝑛
∗
𝑝 +1 , … , 𝑛 ∗

𝑚
) . The recent ad-

ances in computational and algorithmic game theory have shown that

nding a Nash equilibrium is hard. Usually problem-specific structures

ave to be exploited in order to find an equilibrium [33–37] .

Note that the problem studied in the paper can be well understood

hrough a non-cooperative game as providers compete with each other

nder the two system-level mechanisms. In addition, users do not pur-

hase resources from providers through a market, therefore auction the-

ry is not applicable to the problem studied in the paper.

In addition, in our game model the providers do not receive rev-

nue or profit directly from end users. Instead, they receive revenue

hares indirectly from the edge system. It is the revenue collected by

he edge system that is then split or shared between the providers. The

roviders do not cooperate for revenue sharing, instead, they compete

gainst each other in order to increase their revenue shares, given that

hey are aware of how the system decides the revenue shares for them

hrough the revenue sharing mechanism.

In an edge/cloud computing market which is dominated by several

iant resource providers competing with each other, our framework can

e adopted by those providers and edge systems. The providers that join

n edge system are players and they compete with each other under the

wo system-level mechanisms of the edge system, and their fair revenue

haring can be decided by an edge system through an optimal sharing

echanism.

. Distribution of computing tasks

.1. Objective of task distribution

Since an important application of edge computing is to serve tasks

ith low latency requirement, we focus on tasks with completion dead-

ines. Recall that a task has a value, which can be regarded as the pay-

ent that the task’s owner (i.e., a client) is willing to pay for completing

he task. The objective of a task distribution mechanism is to maximize the
otal received value (as a revenue) for the tasks that are completed before

heir deadlines . In this section, we present an optimization formulation

or the case where tasks arrive in a batch (i.e., at the same time) to il-

ustrate the characteristic of task distribution, and then we will present

 greedy algorithm to address a practical dynamic task arrival setting.

.2. Optimal task distribution formulation

We consider both batch task arrival and dynamic task arrival in de-

igning optimal task distribution mechanisms. Recall the game is played

nder task distribution mechanisms.

.2.1. Batch task arrival

A system manager distributes all tasks arriving in a batch to servers

y solving an optimization problem to maximize the total received rev-

nue from those completed tasks. We assume that the execution order of

hose tasks on a server should be the same as the order of their arrivals.

e also assume that tasks are not splittable.

Let ℕ 𝐽 denote the set of tasks with 𝑁 𝐽 = |ℕ 𝐽 |, and let ℕ 𝑆 denote the

et of servers with 𝑁 𝑆 = |ℕ 𝑆 |. Tasks are ordered increasingly according

o their arrival times and indexed by 𝑖 = 1 , … , 𝑁 𝐽 , and servers are in-

exed by 𝑗 = 1 , … , 𝑁 𝑆 . Let x ij denote the assignment of task i to server j .

hen 𝑥 𝑖𝑗 = 1 indicates that task i is assigned to server j ; otherwise 𝑥 𝑖𝑗 = 0 .
et d ij denote the completion time of task i when it is assigned to server

 . Note that d ij includes the computation time of task i on server j and the

ime to transfer task i to server j . In addition, a task i might experience

 queuing delay if some other tasks are scheduled on the same sever (as

ask i) but should be executed before task i as they arrive earlier than

ask i . Queuing delay is discussed next.

Let v i denote the value of task i or the payment that the owner (i.e.,

lient) of task i will pay for completing task i . If task i is completed before

ts deadline, the system manager will receive v i ; otherwise, the manager

eceives nothing. The objective of the manager is to maximize its to-

al received payment or value (as a revenue) by solving the following

ptimization problem.

ax
𝑥 𝑖𝑗

𝑁 𝑆 ∑
𝑗=1

𝑁 𝐽 ∑
𝑖 =1

𝑣 𝑖 𝑥 𝑖𝑗 (4)

.𝑡. 0 ⩽
𝑁 𝑆 ∑
𝑗=1

𝑥 𝑖𝑗 ⩽ 1 , ∀𝑖 (5)

 𝑖𝑗 ∈ {0 , 1} , ∀𝑖 ; ∀𝑗 (6)

 𝑖𝑗 𝑑 𝑖𝑗 +

𝑖 −1 ∑
𝑘 =1
𝑞 𝑖𝑗𝑘 𝑑 𝑘𝑗 ⩽ 𝐿 𝑖 , ∀𝑖, ∀𝑗 (7)

 𝑖𝑗 = 0 → 𝑞 𝑖𝑗𝑘 = 0 , ∀𝑖, ∀𝑘 ∈ {1 , … , 𝑖 − 1}; ∀𝑗 (8)

 𝑖𝑗 = 1 → 𝑞 𝑖𝑗𝑘 = 𝑥 𝑘𝑗 , ∀𝑖, ∀𝑘 ∈ {1 , … , 𝑖 − 1}; ∀𝑗 (9)

 𝑖𝑗𝑘 ∈ {0 , 1} , ∀𝑖, ∀𝑘 ∈ {1 , … , 𝑖 − 1}; ∀𝑗 (10)

here (5) and (6) require that a task can be assigned to at most one

erver. The three constraints (7), (8) , and (9) collectively require that

hen assigned to server j , task i should be completed no later than its

eadline (i.e., the maximum allowed latency L i). Task i ’s total delay on

erver j is given by 𝑥 𝑖𝑗 𝑑 𝑖𝑗 +

𝑖 −1 ∑
𝑘 =1
𝑞 𝑖𝑗𝑘 𝑑 𝑘𝑗 , as shown in (7) . The two con-

traints (8) and (9) indicate that q ijk is equivalent to x ij x kj . Note that

8) and (9) are called indicator constraints in CPLEX solver [39] . The
𝑖 −1 ∑
 =1
𝑞 𝑖𝑗𝑘 𝑑 𝑘𝑗 represents the queuing delay of task i if it is assigned to server

 . Recall that the tasks are served in a first-come first-serve order. If task

 arriving before task i (with 𝑘 ∈ {1 , … , 𝑖 − 1}) is also assigned to server

 , then task i has to wait till task k is finished. The queuing delay of task

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

i

f

d

3

t

C

i

d

t

g

A

R

a

i

t

b

c

c

A

l

v

v

e

t

p

c

w

4

S

O

i

f

s

i

4

i

a

c

s

m

𝑁

e

r

t

L

m

𝜙

T

p

f

b

v

a

s

w

i

n

w

4

g

i

a

T

f

a

p

p

S

f

a

𝑖

p

t

t

t

t

e

b

{

e

v

f

{

c

f

 on server j only makes sense when task i is assigned to server j . There-

ore, (8) says that when task i is not assigned to server j , its queuing

elay constraint (7) on server j should be removed 2 .

.2.2. Dynamic task arrival

The above optimization formulation for batch arrival of tasks illus-

rates the nature of the optimization problem to be solved by an Edge-

loud system’s manager, but it is difficult to implement in practice. This

s because usually tasks arrive in a dynamic fashion, and since they have

eadlines, they need to be sent to available servers immediately in order

o meet their latency requirements.

To address the case of dynamic task arrival, we introduce an online

reedy algorithm (shown as Algorithm 1) to be used by a system man-

lgorithm 1 Online Greedy Task Distribution Algorithm.

equire: ⟨ℕ 𝐽 (𝑇) , ℕ 𝑆 , 𝑇 ⟩,where 𝑇 is the time period during which the

algorithm executes,and ℕ 𝐽 (𝑇) is a set of tasks and their arrival times

during 𝑇 , and ℕ 𝑆 is a server set.

1: 𝑡 ← 0 , 𝑄 = ∅ (𝑄 is a priority queue where the task with the highest

value is at the front of 𝑄).

2: while 𝑡 ≤ 𝑇 do

3: If a task arrives at time 𝑡 , insert it into 𝑄 :

4: If multiple tasks have the same value, order them according to

their arrival time order.

5: If a set of servers are available at time 𝑡 (denoted by 𝕊 𝑡 ⊆ ℕ 𝑆),use

a loop to select all servers one at a time and in random order from

𝕊 𝑡 , and for each selected server 𝑠𝑣𝑟 𝑗 :

6: Start from the front of 𝑄 , search for the task with the highest

valueamong all tasks that can be finishedbefore their deadlines

if processed by 𝑠𝑣𝑟 𝑗 . Let 𝑡𝑎𝑠𝑘 ∗ denote such a task.

7: If 𝑡𝑎𝑠𝑘 ∗ is found, stop search and start a new thread for 𝑠𝑣𝑟 𝑗
to work on 𝑡𝑎𝑠𝑘 ∗ .

8: end while

ger to maximize its total received revenue. The idea of the algorithm

s: whenever a server is available, it should be given to the task with

he highest value among all tasks that are present in the system and can

e completed before their deadlines by the server. Note that servers be-

ome available at different times, which depends on the tasks they are

urrently working on and the task arrival process.

If all tasks arrive at the same time at the beginning, then

lgorithm 1 is essentially a heuristic to solve the optimization prob-

em (4) formulated for the batch task arrival case. In addition, if a task’s

alue is inversely proportional to its deadline, then Algorithm 1 is a

ariant of earliest-deadline-first scheduling algorithm, but without pre-

mptive scheduling. In an Edge-Cloud system, a server cannot suspend

he execution of a task in order to execute some other task with higher

riority, due to the non-negligible communication cost/delay in edge

omputing environment. Both batch arrival and dynamic arrival of tasks

ill be investigated in Section 5 .

. Mechanisms for revenue sharing

We investigate the following three revenue sharing mechanisms: (1)

hapley value [8] ; (2) A proportional sharing mechanism proposed by

rtmann [9] , referred to as Ortmann proportional sharing ; (3) and a shar-

ng mechanism based directly on each server’s actual contribution, re-

erred to as Direct-contribution-based sharing mechanism.
2 We do not consider task drops due to buffer overflow by assuming that the

ystem’s task queue is sufficiently large and the system’s task processing capacity

s well provisioned.

4

o

a

t
.1. Shapley-value revenue sharing mechanism

Shapley value [8] is a marginal contribution based revenue shar-

ng mechanism. For an Edge-Cloud system, we define Shapley value as

 function that distributes among a set of servers the total revenue re-

eived by the system in organizing the servers to work on a set of tasks. It

pecifies that the revenue a server receives equals the server’s expected

arginal contribution.

Formally, consider a set of tasks ℕ 𝐽 , and a set of servers ℕ 𝑆 (with

 𝑆 = |ℕ 𝑆 |). Note that a server can be owned by a cloud provider or an

dge provider. Define the value of set 𝕊 , denoted by 𝑣 (𝕊) , as the total

eceived value by only using servers in set 𝕊 (with 𝕊 ⊆ ℕ 𝑆) to work on

he tasks in ℕ 𝐽 . Note that v is a function of task distribution mechanism.

et 𝜙i denote the revenue share given to server i . The Shapley value

echanism assigns the following revenue share to server i :

𝑖 (ℕ 𝑆) =

1
𝑁 𝑆 !

∑
𝕊 ⊆ℕ 𝑆 ⧵{ 𝑖 }

|𝕊 |!(𝑁 𝑆 − |𝕊 | − 1)!
(
𝑣 (𝕊 ∪ { 𝑖 }) − 𝑣 (𝕊)

)
. (11)

his revenue distribution mechanism satisfies the following desired

roperty [8,30,40,41] : fairness or balanced contribution , which says that

or any pair of servers 𝑖, 𝑗 ∈ ℕ 𝑆 , j ’s contribution to i equals i ’s contri-

ution to j , i.e., 𝜙𝑖 (ℕ 𝑆) − 𝜙𝑖 (ℕ 𝑆 ⧵ { 𝑗}) = 𝜙𝑗 (ℕ 𝑆) − 𝜙𝑗 (ℕ 𝑆 ⧵ { 𝑖 }) . Shapley

alue sharing mechanism also has some other important properties such

s symmetry, efficiency (the sum of revenue shares distributed to all

ervers equals the total received revenue), and dummy (i.e., a player

ill not receive any revenue share if it does not make any contribution

n any coalition). In the system we study, a server will always receive

on-zero revenue share because there always exists some coalition in

hich the server can make some contribution.

.1.1. Computing shapley values

The amount of time to compute Shapley values for all servers in a

ame is exponential, if the computation is done according to the def-

nition in Eq. (11) . However, we are able to derive a polynomial time

lgorithm, shown as Algorithm 2 , based on the following assumptions.

he servers in a system can be divided into groups, which belong to dif-

erent providers. For ease of exposition, assume that a provider has one

nd exactly one group. Further we assume that the servers in a group or

rovider have similar capacity (in terms of CPU, path bandwidth, and

ropagation delay) as they are offered by the same provider. Then the

hapley values for all servers in a provider should be the same. Therefore

or provider k , we just need to calculate a Shapley value 𝜙i , where i is an

rbitrary server in the set of servers of provider k (denoted by ℕ

𝑘
𝑆

), i.e.,

 ∈ ℕ

𝑘
𝑆

. Then, provider k ’s revenue is 𝑣 𝑘 (𝑁 𝑘) = 𝑁 𝑘 𝜙𝑖 , with 𝑁 𝑘 = |ℕ

𝑘
𝑆
|.

An example of computing Shapley values. We use a simple exam-

le of two providers to illustrate Algorithm 2 . Consider a cloud provider

hat offers two cloud servers c 1 , c 2 and an edge provider that offers

hree edge servers e 1 , e 2, and e 3 in an Edge-Cloud system. According

o Eq. (11) , in order to derive the Shapley value of c 1 , we need to find

he values of sets 𝕊 and 𝕊
⋃
{ 𝑐 1 } . There are 32 such sets (including the

mpty set).

However, all three edge servers can be treated as equivalent, and

oth cloud servers are also equivalent. For example, the value of set

 c 1 , e 1, e 2} equals the values of sets { c 1 , e 1, e 3}{ c 1 , e 2, e 3}, { c 2 , e 1,

 2}, { c 2 , e 1, e 3} and { c 2 , e 2, e 3}. Therefore, to calculate the Shapley

alue of cloud server c 1 , we only need to calculate the values of the

ollowing eleven sets { c 1 }, { e 1 }, { e 1 , c 1 }, { e 1 , e 2 }, { c 1 , c 2 }, { e 1 , e 2 , c 1 },

 e 1 , e 2 , e 3 }, { e 1 , c 2 , c 1 }, { e 1 , e 2 , e 3 , c 1 }, { e 1 , e 2 , c 2 , c 1 }, { e 1 , e 2 , e 3 , c 2 ,

 1 }, based on Algorithm 2 . Essentially, we reduce the computation time

rom exponential to polynomial.

.1.2. Time complexity of Algorithm 2

Recall that m is the number of providers and it does not depend

n N (the number of servers). In practice, m is always upper bounded

nd small because a resource provider that serves a particular region ei-

her belongs to a local/regional network service provider or a national

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Algorithm 2 Compute the Shapley value of each server of m providers

in an Edge-Cloud system..

Require: Task set ℕ 𝐽 ; Server set ℕ 𝑆 =

⋃
𝑘 ℕ

𝑘
𝑆

, where ℕ

𝑘
𝑆

isthe set of

servers of provider 𝑘 , 𝑁 𝑘 = |ℕ

𝑘
𝑆
|, 𝑁 = |ℕ 𝑆 |, 𝑘 = 1 , 2 , …, 𝑚 .

1: for 𝑗 = 1 , 2 , …, 𝑚 do

2: Initialize 𝑉 𝑠
𝑗
= 0 .

3: for 𝑛 𝑗 = 0 ; 𝑛 𝑗 ≤ 𝑁 𝑗 − 1 do

4: Do a 𝑚 − 1 level nested loop to find all

combinations (𝑛 1 , 𝑛 2 , …, 𝑛 𝑗−1 , 𝑛 𝑗+1 , …, 𝑛 𝑚) ,where each num-

ber 𝑛 𝑘 (with 𝑘 ∈ {1 , 2 , …, 𝑗 − 1 , 𝑗 + 1 , …, 𝑚 }) varies from 0 to

𝑁 𝑘 .

5: For each (𝑛 1 , 𝑛 2 , …, 𝑛 𝑗−1 , 𝑛 𝑗 , 𝑛 𝑗+1 , …, 𝑛 𝑚) , do:

6: Invoke a task distribution algorithm (e.g., Algorithm 1)for

task set ℕ 𝐽 to calculate two values 𝑉 1 and 𝑉 2 :

7: 𝑉 1 = 𝑉 [𝑛 1][𝑛 2] …[𝑛 𝑗−1][𝑛 𝑗][𝑛 𝑗+1] …[𝑛 𝑚] , i.e., the value of the

setthat contains 𝑛 𝑘 servers from provider 𝑘 , with 𝑘 ∈
{1 , 2 , …, 𝑚 } .

8: 𝑉 2 = 𝑉 [𝑛 1][𝑛 2] …[𝑛 𝑗−1][𝑛 𝑗 + 1][𝑛 𝑗+1] …[𝑛 𝑚] . (Similar to 𝑉 1 ,

except that 𝑛 𝑗 + 1 is used for provider 𝑗).

9: Calculate 𝐶 𝑐𝑜𝑒𝑓𝑓 = 𝐶
𝑛 1
𝑁 1

⋅ 𝐶 𝑛 2
𝑁 2

⋯ 𝐶
𝑛 𝑗−1
𝑁 𝑗−1

⋅ 𝐶
𝑛 𝑗

𝑁 𝑗 −1
⋅

𝐶
𝑛 𝑗+1
𝑁 𝑗+1

⋯ 𝐶
𝑛 𝑚
𝑁 𝑚

.(Note that 𝑁 𝑗 − 1 is used for provider

𝑗).

10: Let 𝑆 =

∑𝑚

𝑘 =1 𝑛 𝑘 .

11: Calculate 𝑉 𝑖𝑛𝑐
𝑛 1 ,𝑛 2 , …𝑛 𝑗−1 ,𝑛 𝑗 ,𝑛 𝑗+1 …𝑛 𝑚

=

𝑆!
𝑁! (𝑁 − 𝑆 − 1)! ⋅ 𝐶 𝑐𝑜𝑒𝑓𝑓 ⋅

(𝑉 2 − 𝑉 1) .
12: Increase 𝑉 𝑠

𝑗
by 𝑉 𝑖𝑛𝑐

𝑛 1 ,𝑛 2 , …𝑛 𝑗−1 ,𝑛 𝑗 ,𝑛 𝑗+1 …𝑛 𝑚
.

13: end for

14: Record 𝑉 𝑠
𝑗

(Shapley value of a server in provider 𝑗).

15: end for

16: Return Shapley value 𝜙
𝑖 ∈ℕ 𝑗

𝑆

(ℕ 𝑆) = 𝑉 𝑠
𝑗

,with 𝑗 = 1 , 2 , …, 𝑚 . (All

servers in a provider havethe same Shapley value.)

p

w

𝑁

𝑁

l

𝑁

S

p

n

n

a

i

s

t

1

t

s

v

t

m

A

l

g

m

t

4

m

l

t

o

a

(

a

c

b

w

i

o

t

s

r

t

s

c

t

𝜙

t

b

s

o

O

i

s

𝑣

a

g

2

n

l

a

a

p

t

h

𝑣

3

l

s

v

i

l

s

rovider (e.g., AT&T [26]) 3 . Consider a system of two providers, in

hich an edge provider has a set of servers ℕ 1 = { 𝑒 1 , 𝑒 2 , ⋯ , 𝑒 𝑁 1
} , |ℕ 1 | =

 1 , and a cloud provider has a set of servers ℕ 2 = { 𝑐 1 , 𝑐 2 , ⋯ , 𝑐 𝑁 2
} , |ℕ 2 | =

 2 . All cloud servers are equivalent, and all edge servers are equiva-

ent. And the set of all servers is ℕ = { 𝑒 1 , 𝑒 2 , ⋯ , 𝑒 𝑁 1
, 𝑐 1 , 𝑐 2 , ⋯ , 𝑐 𝑁 2

} , |ℕ | =
 1 + 𝑁 2 . Suppose we would like to apply Algorithm 2 to calculate the

hapley value of a particular edge server e i that belongs to the edge

rovider with server set ℕ 1 . For any two subsets S 1 and S 2 of ℕ that do

ot contain e i , we have 𝑣 (𝑆 1) = 𝑣 (𝑆 2) and 𝑣 (𝑆 1
⋃
𝑒 𝑖) = 𝑣 (𝑆 2

⋃
𝑒 𝑖) , if the

umber of edge servers in S 1 equals the number of edge servers in S 2 ,

nd the number of cloud servers in S 1 equals the number of cloud servers

n S 2 . Then, we only need to calculate the values of (𝑁 1 + 1)(𝑁 2 + 1) − 1
ets. This is because, for a set listed in the Shapley value formula (11) ,

he set might contain a number of edge servers and the number can be 0,

, ⋅⋅⋅, N 1 ; similarly, the set might contain a number of cloud servers and

he number can be 0, 1, ⋅⋅⋅, N 2 . Thus, the total number of the unique

ets is (𝑁 1 + 1)(𝑁 2 + 1) − 1 , where the -1 is needed for removing the

alue calculation for the empty set ∅ which is always zero. Therefore,

he time complexity of Algorithm 2 is O (N 1 N 2). In general, if there are

 providers which have 𝑁 1 , 𝑁 2 , … , 𝑁 𝑚 servers, the time complexity of

lgorithm 2 is O (N 1 N 2 ⋅⋅⋅N m

).
3 It will not make any sense for a local resource provider to provide low-

atency and low-network-cost edge computing service to another region that is

eographically far away. In addition, cloud service providers are sufficient to

eet the global analytics requirements of the clients in a particular region, and

here are only very few large cloud providers in practice.

n

t

l

4

p

l
.2. Direct-contribution-based and ortmann proportional sharing

echanisms

Direct-contribution-based sharing mechanism is explained as fol-

ows. A server is rewarded with a share of revenue that is proportional

o the actual contribution that it has made when working together with

ther servers to complete a set of tasks. In the case where a system man-

ger distributes all of its received revenue among participating servers

i.e., with no revenue share left for itself), the amount of revenue that

 server receives is exactly the same amount of payment given by the

lients whose tasks are completed by the server. Direct-contribution-

ased sharing can be regarded as a baseline sharing mechanism, against

hich other sharing mechanisms can be compared.

Ortmann proportional sharing [9] is a sharing mechanism that is sim-

lar to Shapley value, in the sense that it also relies on some calculation

f the marginal contribution of a server, instead of relying directly on

he server’s actual contribution. For example, for a system with only two

ervers i and j , according to Ortmann proportional sharing, the revenue

eceived by server i should be 𝜙𝑃
𝑖
=

𝑣 ({ 𝑖 })
𝑣 ({ 𝑖 })+ 𝑣 ({ 𝑗}) 𝑣 ({ 𝑖, 𝑗}) , where v ({ i }) is

he revenue or value generated by the system when it only contains

erver i , and v ({ i, j }) is the revenue generated by the system when it

ontains servers i and j . Formally, Ortmann value mechanism assigns

he following revenue share to server i :

𝑃
𝑖
(ℕ 𝑆) =

𝑣 (ℕ 𝑆)

1 +

∑
𝑗∈ℕ 𝑆 ⧵{ 𝑖 }

𝜙𝑃
𝑗
(ℕ 𝑆 ⧵{ 𝑖 })

𝜙𝑃
𝑖
(ℕ 𝑆 ⧵{ 𝑗})

. (12)

Note that Ortmann proportional sharing also has a balanced con-

ribution property, but it differs from Shapley value’s balanced contri-

ution in the following sense. Under Ortmann sharing, for any pair of

ervers 𝑖, 𝑗 ∈ ℕ 𝑆 , j ’s contribution to i equals i ’s contribution to j in terms

f quotient, i.e., 𝜙𝑃
𝑖
(ℕ 𝑆)∕ 𝜙𝑃 𝑖 (ℕ 𝑆 ⧵ { 𝑗}) = 𝜙𝑃

𝑗
(ℕ 𝑆)∕ 𝜙𝑃 𝑗 (ℕ 𝑆 ⧵ { 𝑖 }) . That is,

rtmann’s balanced contribution property is in the form of ratio equal-

ty instead of the difference equality of Shapley’s. For example, con-

ider a system of two players 1 and 2. Let 𝑣 ({1}) = 2 , 𝑣 ({2}) = 6 , and

 ({1 , 2}) = 40 . According to Shapley value sharing, they will get 𝜙𝑆 1 = 18
nd 𝜙𝑆 2 = 22 ; according to Ortmann proportional sharing, they will

et 𝜙𝑃 1 = 10 and 𝜙𝑃 2 = 30 . The Shapley value sharing satisfies 18 − 2 =
2 − 6 , but Ortmann proportional sharing satisfies 10∕2 = 30∕6 .

In this paper, we consider both Shapley and Ortmann sharing mecha-

isms at two different levels, provider level and server level. At provider

evel, a provider with all of its servers is regarded as a single player in

 revenue sharing mechanism. At server level, we consider each server

s an independent player, and sum the total values of all servers of a

rovider as the value of the provider. For example, consider a system of

wo providers, edge provider E and cloud provider C . Edge provider E

as two servers, 1 and 2. Cloud provider C only has one server, 3. Let

 ({1}) = 2 , 𝑣 ({2}) = 2 , 𝑣 ({3}) = 6 , 𝑣 ({1 , 2}) = 10 , 𝑣 ({1 , 3}) = 30 , 𝑣 ({2 , 3}) =
0 , and 𝑣 ({1 , 2 , 3}) = 40 . According to Shapley value sharing at provider

evel, we have 𝜙𝑆
𝐸
= 22 and 𝜙𝑆

𝐶
= 18 ; according to Ortmann proportional

haring at provider level, we have 𝜙𝑃
𝐸
= 25 and 𝜙𝑃

𝐶
= 15 . The Shapley

alue sharing satisfies 22 − 10 = 18 − 6 , but Ortmann proportional shar-

ng satisfies 25∕10 = 15∕6 . According to Shapley value sharing at server

evel, we have 𝜙𝑆
𝐸
=

56
3 and 𝜙𝑆

𝐶
=

64
3 ; according to Ortmann proportional

haring at server level, we have 𝜙𝑃
𝐸
=

160
13 and 𝜙𝑃

𝐶
=

360
13 .

In comparison, as for Direct-contribution-based mechanism, we do

ot distinguish between provider level and server level. This is because

he revenue share that a provider receives is the same at both provider

evel and server level.

.3. Equilibrium state of an edge-Cloud system

Recall that we model the competition among multiple service

roviders as a non-cooperative game, which is under the two system-

evel mechanisms: task distribution mechanism and revenue sharing

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

m

o

T

t

s

P

t

m

s

𝑁

p

i

p

t

𝑁

t

t

t

n

i

𝑉

L

r

v

T

𝑉

H

𝑈

I

𝑈

N

i

d

t

w

i

e

(

w

r

r

m

5

o

d

i

e

d

Fig. 2. Edge-Cloud emulation system.

5

t

t

o

t

o

A

t

a

w

p

g

s

[

c

o

t

P

5

i

n

u

d

c

o

t

c

{

w

o

d

p

a

n

t
echanism. In this section, we prove the existence of Nash equilibrium

f the game.

heorem 1. The game of multiple resource providers in an Edge-Cloud sys-

em has a mixed-strategy Nash equilibrium point, which is an equilibrium

ystem state.

roof. Recall that in an Edge-Cloud system there is a set of computing

asks denoted by ℕ 𝐽 , a set of servers denoted by ℕ 𝑆 with 𝑁 𝑆 = |ℕ 𝑆 |, and

 providers. Without loss of generality, we consider provider i , and its

et of servers is denoted by ℕ

𝑖
𝑆
, and its number of servers is denoted by

 𝑖 = |ℕ

𝑖
𝑆
|, 𝑖 = 1 , 2 , … , 𝑚 . Let − 𝑖 represent the set of all providers except

rovider i, V opt (N i) denote the maximum value of the objective function

n Eq. (4) . Let 𝑁 − 𝑖 be fixed, V opt (N i) is a non-decreasing function of N i .

Note that there always exists a minimum number of servers that

rovider i can place in the system so that all tasks can be completed in

he required time duration. Let 𝑁̄ 𝑖 denote this threshold number. When

 𝑖 ≥ 𝑁̄ 𝑖 and N i increases, V opt (N i) remains the same value. That is, once

here is a sufficient number of servers from provider i that can satisfy

he server allocation to tasks to get the optimal value (in solving the

ask distribution optimization problem), then further increasing N i will

ot get any additional value increase of the objective function.

Let 𝑉 ∗
𝑜𝑝𝑡

denote the stable maximum objective value of V opt (N i), that

s,

∗
𝑜𝑝𝑡

= 𝑉 𝑜𝑝𝑡 (𝑁̄ 𝑖) . (13)

et V i (N i) denote the revenue received by provider i as the result of a

evenue sharing mechanism (e.g., Shapley value) that splits the total

alue/revenue by solving the task distribution optimization problem.

hen,

∗
𝑜𝑝𝑡

= sup
𝑁 𝑖 ∈ℤ + ∪{0}

𝑉 𝑖 (𝑁 𝑖) . (14)

ere we focus on a linear cost function 𝑓 𝑐𝑜𝑠𝑡 (𝑁 𝑖) = 𝛼𝑖 𝑁 𝑖 with 𝛼i > 0.

Eq. (1) shows that the utility of provider i is:

 𝑖 (𝑁 𝑖) = 𝑉 𝑖 (𝑁 𝑖) − 𝛼𝑖 𝑁 𝑖 . (15)

f we take Eq. (14) into consideration, then we have

 𝑖 (𝑁 𝑖) = 𝑉 𝑖 (𝑁 𝑖) − 𝛼𝑖 𝑁 𝑖 ⩽ 𝑉 ∗ 𝑜𝑝𝑡 − 𝛼𝑖 𝑁 𝑖 . (16)

ote that 𝛼i > 0, thus when 𝑁 𝑖 >
𝑉 ∗
𝑜𝑝𝑡

𝛼𝑖
, U i (N i) < 0. In addition, this also

ndicates that once N i reaches a certain value, provider i ’s utility will be a

ecreasing function of N i . Therefore, N i is upper bounded 4 . Meanwhile,

he number of servers of any provider must be a non-negative integer,

hich means 𝑁 𝑖 ∈ ℤ

+ ∪ {0} . The above discussion shows that the game

s finite [42] , and hence the theorem is proved. □

Remarks: We observe in our experiments that pure-strategy Nash

quilibrium also exists in some cases, which are shown in Fig. 5 (a) and

b) in Section 5 . When there is no pure-strategy Nash equilibrium state,

e use the system performance at mixed-strategy Nash equilibrium to

epresent system stable state. When we observe multiple Nash equilib-

ia in some of our experiments, we examine the average system perfor-

ance at those equilibrium states.

. Impact of revenue sharing mechanisms on system performance

We discuss in this section the impact of revenue sharing mechanisms

n the performance of an Edge-Cloud system. Our investigation is con-

ucted through a combination of emulations and simulations 5 .
4 In practice, N i is also upper bounded as the number of servers of a provider

s always limited.
5 Due to resource constraints, it is impossible for us to conduct Internet-scale

xperiments. Therefore we mainly rely on simulations with system parameters

erived from our experiments and empirical trace.

t

6

p

o

e

u

.1. Edge-Cloud emulation system

We have built an experimental system to emulate an Edge-Cloud sys-

em, and based on which we have conducted experiments to derive sys-

em parameters to drive our simulations. The system consists of a pool

f edge clients (on a number of Raspberry Pi’s [43] and Ubuntu lap-

ops), a system manager (a distributed software component), and a pool

f servers (on a number of Ubuntu workstations), as shown in Fig. 2 .

 client at the edge submits its computation tasks to the manager at

he edge who schedules and dispatches received tasks to servers. There

re two types of servers in the system: edge servers and cloud servers,

hich respectively belong to edge service providers and cloud service

roviders. The edge servers have higher bandwidth and shorter propa-

ation delays (on the paths between them and clients) than the cloud

ervers. Once a server receives a task from a client, a Docker container

6] will be launched on the server to process the task. Once the task is

ompleted, the server will notify the manager and sends back the result

f the task to the edge client. The communication between the clients,

he manager, and the servers is through Web Application Messaging

rotocol (WAMP) [44] , a real-time messaging protocol.

.2. Determining simulation parameters

We utilize image processing (a typical edge computing application)

n our simulations to investigate the impact of revenue sharing mecha-

isms. In this subsection, we discuss how to derive system parameters

sed in our simulations.

We focus on an object detection application, i.e., a client’s task is to

etect whether a specific object appears in a collection of images. The

lient submits a collection of images including the image of the target

bject and a number of candidate images in a batch to the system, and

hen the system assigns the task to a server. The server launches a Docker

ontainer [6] to process the images using OpenCV [45] .

A simulation run is characterized by a group of system parameters:

 𝑇 , ℕ 𝐽 (𝑇) , ℕ 𝑆 , 𝜆, 𝑓 𝑑𝑒𝑙𝑎𝑦 , 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑘 𝑏𝑤 } , (17)

here T is the system time duration we simulate; ℕ 𝐽 (𝑇) denotes the set

f tasks and their arrival times during T ; ℕ 𝑆 denotes the set of servers; 𝜆

enotes task arrival rate; f delay denotes the function to calculate the com-

letion time of a task; k latency denotes a latency factor; and k bw denotes

 bandwidth factor. These parameters are discussed below.

In our simulations, we let the size of a task be a uniform random

umber drawn from the range [1,20] MB. We can think of task size in

he context of an object detection application as follows. The average

ask size 10 MB (in our simulations) roughly corresponds to a batch of

 images with a typical image size (about 1.6 MB on a typical smart-

hone). The average task size also roughly corresponds to a collection

f 63 images from the Microsoft COCO image dataset [46] with an av-

rage image size of 159 KB. The value of a task is a number chosen

niformly at random from range [1,5].

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 3. Google trace [10] .

r

t

m

G

r

d

s

t

w

a

w

p

t

6

i

s

T

f

i

F

m

G

a

O

𝑛

r

c

t

r

c

t

m

t

s

i

i

t

B

o

p

𝐿

a

t

f

Fig. 4. Revenue and utility of one provider.

a

M

w

e

f

n

f

r

e

c

p

T

t

𝑓

T

a

b

a

e

o

n

w

t

t

i

5

t

S

t

r

i

6

w

t

o

t

u

6 If the size of a task’s result is comparable with the task’s size, an edge server’s

advantage over a cloud server is even larger in terms of latency. The delay due

to result transmission will not qualitatively affect our results.
7 As a future work, we will decide empirically the cost coefficient 𝛼p by con-

sidering actual operating cost, e.g., power consumption, electricity usage. We

will also study other cost functions that may include investment cost, energy

cost, storage cost, etc.
We assume that tasks arrive at the system in a Poisson process with

ate 𝜆 (number of tasks per minute). Poisson process is a typical stochas-

ic process used in modeling task arrival process. We choose 𝜆 = 40 per

inute in our simulations, which is the average task arrival rate in

oogle cloud trace [10] . Besides the Poisson task arrival process, we also

un simulations of the empirical task arrival process from the Google

ataset, as shown in Section 5.5 . With Google cloud data, a task may con-

ist of multiple jobs with different job arrival times. We take the arrival

ime of the earliest job of a task as the task’s arrival time. Specifically,

e divide the time duration of the Google task arrival trace [10] into

 sequence of 60-minute time intervals, which is shown in Fig. 3 , and

ithin each interval, we calculate the average number of arriving tasks

er minute. We remove those 60-minute time intervals during which

here is no task arrival, and we observe that over 75 percent of those

0-minute intervals have more than 40 task arrivals per minute. Then

n the simulations, we adopt a task arrival rate of 40 per minute.

The completion time f delay of a task on a server depends on the

erver’s CPU and bandwidth (of the path between itself and clients).

hrough our experiments on our experimental system, we find that

or the object detection application, the computation time of process-

ng a batch of images is linearly proportional to the size of the batch.

or example, we tested a server in our experiments, which was a Dell

obile workstation with Intel Core i 7 2.60 GHz, 4 cores CPU, and 16

B memory. We randomly selected n images from Microsoft COCO im-

ge database [46] and then ran the object detection application with

penCV. Each experimental setting was repeated 10 times. We choose

 = 10 , 50 , 100 , 200 , 300 , and for each n value and each experiment, we

ecorded the total size of the batch of images. Let t i (sec) denote the

omputation time of processing a batch of images of s i MB. We found

hat there was a strong linear relationship between t i and s i , and a linear

egression analysis shows that 𝑡 𝑖 = 2 . 6 𝑠 𝑖 . We will utilize this function to

alculate the computation time of a task in our simulations reported in

he rest of this section.

A task i has a latency requirement, denoted by L i seconds (i.e., the

aximum allowed delay). It is determined as follows. Let L i, avg denote

he amount of time to complete task i on an average server (i.e., a

erver with an average CPU power and average bandwidth to clients

n the system) without considering any queuing delay. Note that L i, avg

ncludes computation time and task transmission time. Assume that

he average upload bandwidth of the paths from clients to servers is

 Mbps, and assume that an average server has a CPU similar to the

ne used in our experiments described above. Then, based on our ex-

eriments, we found the following empirical functional relationship,

 𝑖,𝑎𝑣𝑔 = 2 . 6 𝑠 𝑖 + (8 𝑠 𝑖 ∕ 𝐵) + 𝑑 𝑝𝑟𝑜𝑝 sec, where s i is task i ’s size (MB), and the

verage propagation delay d prop is negligible compared with computa-

ion and transmission delays. In our experiments, we let the bandwidth

rom a client to an edge server be 24 Mbps (i.e., a WiFi environment),
nd then we let the bandwidth from a client to a cloud server be 24/ k bw

bps, where bandwidth factor 𝑘 𝑏𝑤 (= 1 , 2 , 3 , and 4) model the practice

here a cloud server usually has lower bandwidth to clients than an

dge server. In calculating L i, avg , we do not consider the time to trans-

er results back to clients as the sizes of the results are very small and

egligible 6 . Then, we let L i be a number chosen uniformly at random

rom range [L i, avg , k latency L i, avg], where latency factor k latency ≥ 1. The

ationale of choosing such a latency requirement is: a client should not

xpect that its task to be completed earlier than what an average server

an offer; and it is reasonable for a client to expect its task to be com-

leted not k latency times longer than what an average server can offer.

he actual deadline of task i is given by 𝑎 𝑖 + 𝐿 𝑖 , where a i is the arrival

ime of task i .

Recall that the utility of a provider p is given by 𝑈 𝑝 (𝑛 𝑝) = 𝑣 𝑝 (𝑛 𝑝) −
 𝑐𝑜𝑠𝑡 (𝑛 𝑝) . We focus on a linear cost function 𝑓 𝑐𝑜𝑠𝑡 (𝑛 𝑝) = 𝛼𝑝 𝑛 𝑝 with 𝛼p > 0.

hus, the utility of a provider p is given by 𝑈 𝑝 = 𝑣 𝑝 (𝑛 𝑝) − 𝛼𝑝 𝑛 𝑝 . We choose

 value for 𝛼p to make the cost of providing a certain number of servers

e comparable to the revenue received due to making those servers

vailable 7 . Specifically, we simulated an Edge-Cloud system with an

dge player and a cloud player. We repeated the simulation for vari-

us combinations of the numbers of edge and cloud servers, with a total

umber of servers varying from 2 to 30. Based on these simulation runs,

e choose 𝛼𝑒𝑑𝑔𝑒 = 4 and 𝛼𝑐𝑙𝑜𝑢𝑑 = 3 for edge and cloud player respec-

ively, when simulation lasts 𝑇 = 60 minutes. We let 𝛼edge > 𝛼cloud , as

ypically a cloud provider can deploy servers with a lower cost due to

ts economy of scale compared with edge providers.

.3. Nash equilibrium and efficiency loss

We next illustrate the existence of Nash equilibrium through a system

hat consists of two providers, with a set of tasks arriving in a batch, and

hapley value mechanism is adopted by the system.

First suppose that the servers of both providers are all identical in

erms of CPU and bandwidth. This game is referred to as a symmet-

ic game. Fig. 4 (a) shows the revenue received by a provider by vary-

ng its number of servers in the system, when the other provider places

 servers in the system. The revenue curve is increasing and concave,

hich shows that the provider’s marginal revenue is decreasing even

hough its received revenue is increasing due to its increasing number

f servers. Fig. 4 (b) shows the utility received by the provider. We see

hat due to the decreasing marginal revenue and the increasing cost, the

tility first increases and then drops.

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 5. Best response curves of two providers in two games.

c

b

t

c

a

t

t

c

t

t

a

o

N

t

o

t

𝑈

w

a

s

i

t

(

w

N

F

F

T

c

s

s

d

e

c

n

t

o

i

u

t

o

b

T

H

s

5

e

r

c

i

c

t

m

D

t

8

e

s

E

t

o

t

5

p

i

c

p

t

l

s

S

l

s

a

5

m

n

a

p

a

f

2

l

e

d

t

c

Based on the utilities of the two players, we derive their best response

urves [31,38] and draw them in Fig. 5 (a). Each point of a player’s

est response curve represents the player’s best strategy in response to

he other player’s strategy. For example, a point on the best response

urve of player 2 to player 1 represents the number of servers (the y-

xis value of the point) that gives player 2 the maximum utility given

hat player 1 chooses a certain number of servers (the x-axis value of

he point). Therefore, any intersection point of the two best response

urves represents a Nash equilibrium. Fig. 5 (a) shows that the game has

wo Nash equilibria (𝑛 ∗ 1 , 𝑛
∗
2) = (14 , 15) or (𝑛 ∗ 1 , 𝑛

∗
2) = (15 , 14) , where 𝑛 ∗ 1 is

he optimal strategy of player 1 with respect to player 2’s strategy 𝑛 ∗ 2 ,

nd vice versa. Our simulation of 3-player games also show the existence

f equilibrium states.

Note that a typical metric to measure a system’s performance at a

ash equilibrium is efficiency loss [31,47] , which is a comparison be-

ween the overall system utility at the equilibrium with the maximum

verall system utility. We use the relative utility loss of an equilibrium

o capture the efficiency loss of the equilibrium, which is defined as

 𝑙𝑜𝑠𝑠 =

(
max { 𝑛 𝑝 }

∑
𝑝 𝑈 𝑝 (𝑛 𝑝)

)
−

(∑
𝑝 𝑈

𝑁𝐸
𝑝

(𝑛 𝑁𝐸
𝑝

)
)

max { 𝑛 𝑝 }
∑
𝑝 𝑈 𝑝 (𝑛 𝑝)

, (18)

here p denotes a provider or a player, 𝑈

𝑁𝐸
𝑝

is the utility of player p

t Nash equilibrium NE , and max { 𝑛 𝑝 }
∑
𝑝 𝑈 𝑝 (𝑛 𝑝) is the maximum overall

ystem utility 8 . For example, in the above game with 50 tasks arriving

n a batch, we observe that the system’s utility loss is around 19.5% at

he unique equilibrium

9 .

As another example, we change the previous game by setting 𝑘 𝑏𝑤 = 4
then the game is asymmetric as the two players have different band-

idth). Fig. 5 (b) shows the existence of Nash equilibrium in this game.

ote the difference of the settings in Fig. 5 (a) and (b). The servers in

ig. 5 (a) are all of the same type (i.e., edge servers), and the servers in

ig. 5 (b) are of two different types (i.e., edge servers and cloud servers).

o execute the same number of tasks, more servers are needed in the

ase where only edge servers are available. Thus, the total number of

ervers in the system in Fig. 5 (a) is greater than the total number of

ervers in Fig. 5 (b).

Note that our experiments involve a process of finding optimal task

istributions, solving revenue sharing problems, and then finding Nash

quilibria. We find that this is a computationally highly expensive pro-

ess. For example, for the experiments of a system of 50 computational
8 It is the solution of a system-wide utility maximization problem, and the

umbers of servers specified by the solution for the providers may not maximize

heir individual utilities.
9 In some games, there are two Nash equilibria and they are very close to each

ther, similar to the case shown in Fig. 5 (a). The existence of multiple equilibria

s due to the discrete nature of strategies (i.e., number of servers). In those cases,

tility loss is calculated as the average of those equilibria.

i

D

t

o

q

asks with results shown in Fig. 5 (b), it took us more than 20 hours to

btain the Nash equilibrium points under only one type of task distri-

ution and one type of revenue sharing mechanism on a Dell Precision

ower work station with 8 cores, 3.70 GHz CPU, 64 GB RAM, and a 2 TB

D. In addition, it took us more than 60 hours on the same Dell work

tation to generate experimental results shown in Fig. 6 .

.4. Impact of revenue sharing mechanism

Our extensive simulations have demonstrated the existence of Nash

quilibrium in the game between edge and cloud providers in a wide

ange of system/network settings, when tasks arrive in a dynamic pro-

ess. We find that different revenue sharing mechanisms have quite different

mpacts on the performance of an Edge-Cloud system , and in general Direct-

ontribution-based sharing mechanism results in worse system-level efficiency

han Shapley and Ortmann mechanisms, and both of Shapley and Ortmann

echanisms have better performance at provider level than at server level .

ue to space limitations, we only present in this section some results of

he game between a cloud player and an edge player, shown in Figs. 6–

 . For ease of exposition, we let the cloud player’s servers differ from the

dge player’s servers only in the bandwidth of the paths between them-

elves and clients, and we let all servers have the same CPU capacity.

ach simulation presented here lasts 𝑇 = 60 minutes, and tasks arrive at

he system in a Poisson process with 𝜆 = 40 tasks per minute. The results

f our simulations based on the empirical task arrival process in Google

race [10] are similar to the results presented in this subsection.

.4.1. Utility loss of shapley and ortmann mechanisms compared at

rovider level and serve level

In Fig. 6 , we see that Shapley and Ortmann mechanisms both result

n higher system efficiency at provider level than at server level in 79%

ases. This happens due to the fact that the two sharing mechanisms

lace more edge servers at Nash equilibria at provider level to improve

he system performance than at server level.

When the cloud player’s transmission bandwidth is significantly

ower than that of the edge player (𝑘 𝑏𝑤 = 4), and when tasks have very

tringent latency requirement (i.e., 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4), Fig. 6 (a) shows that

hapley mechanism gives the lowest utility loss, near 0% at provider

evel, and 1.98% at server level. Recall that Direct-contribution-based

haring mechanism results in the same utility loss at provider level and

t server level.

.4.2. Utility loss of direct-contribution-based, shapley, and ortmann

echanisms at provider level

From above, we know that Shapley and Ortmann sharing mecha-

isms have better system performance at provider level in general than

t server level. Thus, in this subsection, we compare their performance at

rovider level with the performance of Direct-contribution-based mech-

nism.

From Fig. 7 , we observe that when the transmission bandwidth dif-

erence between cloud servers and edge servers is small (i.e., 𝑘 𝑏𝑤 = 1 or

), and the latency requirement is not stringent (𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2 , or 4) 10 , the

osses of system utility are roughly the same for all three different rev-

nue sharing mechanisms. Note that when the transmission bandwidth

ifference between cloud servers and edge servers is 1 (i.e., 𝑘 𝑏𝑤 = 1),
he only difference between edge servers and cloud servers is the cost

oefficients 𝛼edge and 𝛼cloud .

However, when the cloud player’s transmission bandwidth is signif-

cantly lower than that of the edge player (𝑘 𝑏𝑤 = 4), Fig. 7 shows that

irect-contribution-based sharing gives the worst utility loss among all

hree mechanisms, across different latency requirement levels (k latency)

f tasks.
10 If 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2 , then 2 L i, avg is the amount of time to complete task i (without

ueuing delay) on the server with the lowest bandwidth.

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 6. Utility loss of Shapley and Ortmann Sharing compared at provider and server levels at Nash equilibria.

Fig. 7. Utility loss comparison of three sharing mechanisms at Nash equilibria.

Fig. 8. Ratio of the number of servers of the edge player over that of the cloud player at Nash equilibria.

m

W

u

a

5

e

N

b

f

t

o

s

a

g

n

l

a

r

m

t

c

5

l

q
When latency requirement is not stringent (𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2), Shapley

echanism and Ortmann mechanism have roughly the same utility loss.

hen tasks have very flexible latency requirements (𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 4), the

tility loss of Shapley mechanism is higher than that of Ortmann mech-

nism at provider level.

.4.3. Numbers of servers at equilibria

In addition, we have also examined the ratio of the number of the

dge player’s servers over the number of the cloud player’s servers at

ash equilibrium

11 . Fig. 8 shows that when the bandwidth difference

etween the two players is not big (𝑘 𝑏𝑤 = 1 or 2), the edge player has

ewer number of servers at equilibria than the cloud player across all

hree different revenue sharing mechanisms and all three different levels

f latency requirements. This is because the edge player’s cost of placing

ervers in the system is higher than that of the cloud player.
11 In the case where there are multiple Nash equilibria, the ratio is calculated

s the average of those equilibria, similar to the calculation of utility loss.

i

(

b
When k bw gets higher (𝑘 𝑏𝑤 = 4) and task latency requirement is strin-

ent or normal (𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4 or 2), the cloud player will place fewer

umber of servers (than the edge player) at equilibria under Shap-

ey or Ortmann mechanism. This is because the cloud player’s servers

re less likely able to meet tasks’ deadline requirements, and the two

evenue sharing mechanisms discourage the cloud player from putting

ore servers in the competition. This discouragement leads to a bet-

er system performance (i.e., lower system utility loss) than the Direct-

ontribution-based sharing.

.4.4. The case of large bandwidth difference (𝑘 𝑏𝑤 = 4) and stringent

atency requirements of tasks (𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4)
The disadvantage of Direct-contribution-based sharing mechanism is

uite obvious in this case. Fig. 7 (a) shows that its utility loss (20.08%)

s significantly higher than that of Shapley’s (near 0%) and Ortmann’s

6%). We observe a similar pattern later in Fig. 10 .

This can be explained through Fig. 9 . Under the Direct-contribution-

ased sharing, the very low bandwidth provider (i.e., the cloud player)

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 9. Revenue of cloud provider with 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4 , 𝑘 𝑏𝑤 = 5 and 16 servers of edge provider at Nash equilibria.

s

(

t

a

a

w

p

c

t

o

s

t

a

f

O

b

s

o

r

s

s

F

n

c

p

o

5

d

s

Fig. 10. Utility loss and ratio of the number of servers of the edge player over

that of the cloud player at Nash equilibria.

r

m

b

𝛼

r

v

f

u

5

H

t

e

t
till aggressively utilizes many servers in order to gain a high revenue

as it is rewarded directly based on its actual contributions), which leads

o a very low overall system efficiency, i.e., low overall system utility

t equilibrium states. But Shapley and Ortmann mechanisms discour-

ge such an aggressive behavior of the provider with very low band-

idth, because in this case, Shapley and Ortmann mechanisms give

enalty instead of reward to the low bandwidth cloud servers. Specifi-

ally, Shapley mechanism will start to assign decreasing or even nega-

ive revenue to cloud servers once the number of cloud servers increases

ver a threshold (which implies that placing in the system more cloud

ervers with very low bandwidth will bring negative marginal contribu-

ion to the system); and similarly, Ortmann mechanism will assign lower

nd lower revenues to cloud servers, which is shown in Fig. 9 . There-

ore, compared with Direct-contribution-based mechanism, Shapley and

rtman mechanisms make cloud player (i.e., the provider with lower

andwidth) place fewer number of servers in the system. This is also

hown as the higher ratio of the number of edge severs over the number

f cloud servers under Shapley and Ortman mechanims in Fig. 8 . Our

esults show that in this case, Shapley and Ortmann mechanisms bring

ignificant more revenue to the system than Direct-contribution-based

haring at Nash equilibria, which means lower utility loss, as shown in

igs. 6 and 7 . Our finding suggests that Shapley and Ortmann mecha-

isms, the two mechanisms that distribute revenue based on marginal

ontributions instead of directly on actual contributions, can help im-

rove a system’s overall utility in the face of the self-interested behavior

f providers.

.5. Similar results from google cloud trace

We have also conducted simulations based on Google cloud trace

ata [10] . We pre-process the data, as described in Section 5.2 . Each

imulation presented in this section lasts 𝑇 = 1200 minutes. Here we
Fig. 11. Utility loss comparison of three sharing mechanisms at N
eport results when latency requirement level 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2 , and the trans-

ission bandwidth difference between cloud servers and edge servers

eing 𝑘 𝑏𝑤 = 1 , 2 , 3 , 4 . The cost coefficients of edge and cloud player are

𝑒𝑑𝑔𝑒 = 4 and 𝛼𝑐𝑙𝑜𝑢𝑑 = 3 respectively.

Fig. 10 shows our simulation results based on Google data, and these

esults are consistent with the results of our simulation reported in pre-

ious subsections. Both Shapley and Ortmann sharing mechanisms per-

orm better at provider level than at server level. They both have less

tility loss at Nash equilibria than Direct-contribution-based sharing.

.6. Results of simulations with more than two players

We have also conducted simulations with more than two players.

ere we present the results of the game with the following settings:

hree players with one cloud player and two edge players, three play-

rs with one edge player and two cloud players, and four players with

wo edge players and two cloud players. For the three settings, we have
ash equilibria with more than two players and 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4 .

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

Fig. 12. The number of servers of each player at Nash equilibria with more than two players and 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 1 . 4 .

l

d

F

p

t

e

s

a

e

S

t

s

F

p

c

m

f

S

f

e

t

6

o

p

t

e

h

a

i

o

i

s

s

p

r

h

s

p

s

n

a

A

c

o

d

o

D

i

t

C

v

i

W

a

S

-

A

a

p

S

t

R

[

[

[
atency requirement level 𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2 , and the transmission bandwidth

ifference between cloud servers and edge servers being 𝑘 𝑏𝑤 = 1 , 2 , 3 , 4 .
or ease of exposition, we let the servers belonging to different cloud

layers have the same CPU capacity and the bandwidth of their paths

o clients are the same. And we let the servers belonging to different

dge players have the same capacities as well. The bandwidth of edge

ervers’ paths to clients are also the same. The cost coefficients of edge

nd cloud players are 𝛼𝑒𝑑𝑔𝑒 = 4 and 𝛼𝑐𝑙𝑜𝑢𝑑 = 3 respectively.

The system utility loss of a system and the number of servers of differ-

nt players at Nash equilibrium states are shown in Fig. 11 and Fig. 12 .

pecifically, Figs. 11 (a) and 12 (a) show the results of the game be-

ween one cloud provider and two edge providers. Figs. 11 (b) and 12 (b)

how the game between one edge provider and two cloud providers.

igs. 11 (c) and 12 (c) show the game between two edge and two cloud

roviders. The results reported in these figures are consistent with the

onclusion in the previous sections. That is, at system equilibrium states,

arginal contribution based sharing mechanisms give better system per-

ormance than Direct-contribution-based sharing mechanism.

Summary. Marginal contribution based sharing mechanisms, i.e.,

hapley sharing and Ortmann sharing, give better system-level per-

ormance than Direct-contribution-based sharing mechanism at system

quilibrium state, despite that providers game with the system to pursue

heir self-interested optimization goals.

. Conclusions and future work

We have proposed a game-theoretic framework to explore the design

f revenue sharing mechanism in an Edge-Cloud system in which edge

roviders and cloud providers compete with each other and game with

he system in order to maximize their own utilities. We have shown the

xistence of Nash equilibrium in the game between providers, and we

ave found that at equilibrium system state, the revenue sharing mech-

nism based on marginal contributions of providers can result in signif-

cantly better system performance than revenue sharing based directly

n actual contributions of providers. We have provided fundamental

nsights into the design of revenue sharing mechanisms to deal with

elf-interested providers. For example, under Direct-contribution-based

haring, a provider with very low transmission bandwidth attempts to

lace as many servers as possible in the system (as it is rewarded di-

ectly based on its actual contribution) even when doing so actually

urts the overall system performance. On the other hand, the revenue

haring based on marginal contributions discourage a low bandwidth

rovider from aggressively offering many servers by setting its revenue

hare as a decreasing function of its offered resources. In addition, our

on-cooperative game theoretic framework and revenue sharing mech-

nism design can also be adopted by the giant players, such as AWS,

zure, and IBM Cloud, in today’s cloud/edge computing market where

ustomers may place their application jobs on the servers/data centers

f different major providers, a so-called multi-cloud approach.
For future work, we will conduct further theoretic analysis, study

ynamic game playing processes, and conduct large scale experiments

f Edge-Cloud systems.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

RediT authorship contribution statement

Zhi Cao: Methodology, Software, Validation, Formal analysis, In-

estigation, Writing - original draft, Writing - review & editing, Visual-

zation. Honggang Zhang: Conceptualization, Methodology, Software,

riting - original draft, Writing - review & editing, Supervision, Funding

cquisition, Project administration. Benyuan Liu: Conceptualization,

upervision, Writing - review & editing. Bo Sheng: Resources, Writing

 review & editing.

cknowledgment

This research was supported in part by NSF grants CNS-1527303

nd CNS-1562264. The information reported here does not reflect the

osition or the policy of the federal government of USA.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.comnet.2020.107286 .

eferences

[1] F. Bonomi , R. Milito , J. Zhu , S. Addepalli , Fog computing and its role in the internet

of things, ACM MCC, 2012 .

[2] M. Chiang , Fog Networking: An Overview on Research Opportunities (2016)

arXiv:1601.00835 .

[3] W. Shi , J. Cao , Q. Zhang , Y. Li , L. Xu , Edge computing: vision and challenges, IEEE

J. Internet Things 3 (2016) .

[4] S. Yi , C. Li , Q. Li , A survey of fog computing: concepts, applications and issues, in:

Proceedings of the 2015 Workshop on Mobile Big Data, ACM, 2015, pp. 37–42 .

[5] Kubernetes, (https://kubernetes.io/). Accessed: 2018-05-05.

[6] docker, (http://www.docker.com). Accessed: 2017-03-10.

[7] Foglamp, (https://foglamp.readthedocs.io/en/latest/). Accessed: 2017-12-11.

[8] L.S. Shapley , A Value for n-Person Games, Contributions to the Theory of Games,

Princeton University Press 28 (1953) .

[9] K.M. Ortmann , The proportional value for positive cooperative games, Math.

Method. Oper. Res. 51 (2000) 235–248 .

10] Google, Google cloud cluster data, (http://googleresearch.blogspot.com/2010/01/

google-cluster-data.html).

11] Y.C. Hu , M. Patel , D. Sabella , N. Sprecher , V. Young , Mobile edge computing: a key

technology towards 5g, ETSI White Paper (2015) .

12] P. Liu , D. Willis , S. Banerjee , Paradrop: enabling lightweight multi-tenancy at the

network’s extreme edge, IEEE/ACM SEC, 2016 .

https://doi.org/10.1016/j.comnet.2020.107286
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0004
https://kubernetes.io/
http://www.docker.com
https://foglamp.readthedocs.io/en/latest/
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0006
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0008

Z. Cao, H. Zhang and B. Liu et al. Computer Networks 176 (2020) 107286

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

13] J. Yoon , P. Liu , S. Banerjee , Low-cost video transcoding at the wireless edge,

IEEE/ACM SEC, 2016 .

14] R. Mahmud , R. Kotagiri , R. Buyya , Fog computing: a taxonomy, survey and future

directions, Internet Everything (2018) 103–130 .

15] M. Mukherjee , L. Shu , D. Wang , Survey of fog computing: fundamental, network

applications, and research challenges, IEEE Commun. Surv. Tutor. 20 (3) (2018)

1826–1857 .

16] J. Gedeon , From cell towers to smart street lamps: placing cloudlets on existing

urban infrastructures, in: 2018 IEEE/ACM Symposium on Edge Computing (SEC),

IEEE/ACM, 2018, pp. 187–202 .

17] Z. Cao , H. Zhang , B. Liu , B. Sheng , A game-theoretic framework for revenue shar-

ing in edge-cloud computing system, in: International Performance Computing and

Communications Conference, IEEE, 2018 .

18] T. Zhang , A. Chowdhery , P.V. Bahl , K. Jamieson , S. Banerjee , The design and imple-

mentation of a wireless video surveillance system, ACM MobiCom, 2015 .

19] K. Ha , Z. Chen , W. Hu , W. Richter , P. Pillai , M. Satyanarayanan , Towards wearable

cognitive assistance, ACM MobiSys, 2014 .

20] Z. Wen , D.L. Quoc , P. Bhatotia , R. Chen , M. Lee , Approxiot: approximate analytics for

edge computing, in: 38th IEEE International Conference on Distributed Computing

Systems, ICDCS 2018, IEEE, 2018, pp. 411–421 .

21] X. Cao , J. Zhang , H.V. Poor , An optimal auction mechanism for mobile edge caching,

in: 38th IEEE International Conference on Distributed Computing Systems, ICDCS

2018, IEEE, 2018, pp. 388–399 .

22] S. Jang , Y. Lee , B. Shin , D. Lee , Application-aware IoT camera virtualization for

video analytics edge computing, in: 2018 IEEE/ACM Symposium on Edge Computing

(SEC), IEEE/ACM, 2018, pp. 132–144 .

23] J. Wang , Bandwidth-efficient live video analytics for drones via edge comput-

ing, in: 2018 IEEE/ACM Symposium on Edge Computing (SEC), IEEE/ACM, 2018,

pp. 159–173 .

24] S. Khare , Scalable edge computing for low latency data dissemination in top-

ic-based publish/subscribe, in: 2018 IEEE/ACM Symposium on Edge Computing

(SEC), IEEE/ACM, 2018, pp. 214–227 .

25] S. Maheshwari , Scalability and performance evaluation of edge cloud systems for la-

tency constrained applications, in: 2018 IEEE/ACM Symposium on Edge Computing

(SEC), IEEE/ACM, 2018, pp. 286–299 .

26] AT&T The cloud comes to you, (http://about.att.com/story/reinventing_the_cloud_

through_edge_computing.html). Accessed: 2017-07-27.

27] A. Samanta , Z. Chang , Adaptive service offloading for revenue maximization in mo-

bile edge computing with delay-constraint, Internet Things J. 6 (2019) 3864–3872 .

28] X. Yu , L. Tang , Competition and cooperation between edge and remote clouds, in:

International Conference on Computer and Communications, IEEE, 2018 .

29] R.T. Ma , D.M. Chiu , J. Lui , V. Misra , D. Rubenstein , Internet economics: the use

of shapley value for isp settlement, IEEE/ACM Trans. Netw. (TON) 18 (3) (2010)

775–787 .

30] V. Misra , S. Ioannidis , A. Chaintreau , L. Massoulié, Incentivizing peer-assisted ser-

vices: a fluid shapley value approach, ACM SIGMETRICS Performance Evaluation

Review, 38, 2010 .

31] H. Zhang , D. Towsley , W. Gong , TCP connection game: a study on the selfish behav-

ior of TCP users, IEEE ICNP, 2015 .

32] H. Zhang , B. Liu , H. Susanto , G. Xue , T. Sun , Incentive mechanism for proximi-

ty-based mobile crowd service systems, IEEE INFOCOM, 2016 .

33] A. Rubinstein , Settling the complexity of computing approximate two-player nash

equilibria, in: 57th Annual Symposium on Foundations of Computer Science (FOCS),

IEEE, 2016, pp. 258–265 .

34] C. Daskalakis , P.W. Goldberg , C.H. Papadimitriou , The complexity of computing a

nash equilibrium, SIAM J. Comput. 39 (2009) 195–259 .

35] X. Chen , X. Deng , S.-H. Teng , Settling the complexity of computing two-player nash

equilibria, J. ACM (JACM) 56 (2009) 1–57 .

36] A. Czumaj , M. Fasoulakis , M. Jurdziski , Multi-player approximate nash equilibria, in:

Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,

ACM, 2017, pp. 1511–1513 .

37] A. Rubinstein , Inapproximability of nash equilibrium, SIAM J. Comput. 47 (2018)

917–959 .

38] T. Basar , G.J. Olsder , Dynamic Noncooperative Game Theory, Academic Press, New

York, 1998 .

39] Cplex, (https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex). Accessed: 2017-

07-20.

40] R.B. Myerson , Graphs and cooperation in games, Math. Oper. Res. 2 (3) (1977)

225–229 .
41] H. Susanto , B. Kaushik , B. Liu , B.-G. Kim , Pricing and revenue sharing mechanism

for secondary re-distribution of data service for mobile devices, IEEE IPCCC, 2014 .

42] J. Nash , Non-cooperative games, Ann. Math. 54 (1951) 286–295 .

43] Raspberry pi, (https://www.raspberrypi.org). Accessed: 2017-07-20.

44] The web application messaging protocol, (http://wamp-proto.org). Accessed: 2017-

03-10.

45] G. Bradski , A. Kaehler , Learning opencv: computer vision with the opencv library, ”

O’Reilly Media, Inc. ”, 2008 .

46] T.-Y. Lin , Microsoft coco: common objects in context, in: European Conference on

Computer Vision, Springer, 2014, pp. 740–755 .

47] R. Johari , J.N. Tsitsiklis , Efficiency loss in a network resource allocation game, Math.

Oper. Res. 29 (3) (2004) 407–435 .

Zhi Cao received her BS degree and MS degree in Mathemat-

ics from the University of Science and Technology Beijing in

2014 and 2016 respectively. She is currently working towards

the doctoral degree in the Computer Science Department at

University of Massachusetts Boston. Her primary research in-

terests include Edge Computing, Internet of Things and Deep

Reinforcement Learning.

Honggang Zhang holds a PhD in Computer Science (2006)

from the University of Massachusetts, Amherst, USA. He re-

ceived his BS degree from the Central South University of

China, and his MS degree from Tianjin University of China.

He also received an MS degree from Purdue University, West

Lafayette, IN, USA. He is currently an Associate Professor of

Computer Engineering in the Engineering Department at Uni-

versity of Massachusetts Boston, Boston, MA, USA. His re-

search interests span a wide range of topics in the area of com-

puter networks and distributed systems. His current research

focuses primarily on Edge Computing, Internet of Things, and

Mobile Computing. He was a recipient of the National Science

Foundation (NSF) CAREER Award in 2009.

Benyuan Liu received the BS degree in physics from the

University of Science and Technology of China (USTC), the

MS degree in physics from Yale University, and the PhD de-

gree in computer science from the University of Massachusetts

Amherst. He is currently a faculty member in the Department

of Computer Science, University of Massachusetts Lowell. His

primary research interests are in the area of application, algo-

rithm design and performance analysis of computer networks.

His research has been published in premium computer science

conferences and journals, and has been widely reported by

many news media, including MIT Technology Review, Wired,

CNN, etc. He is a recipient of the NSF CAREER Award.

Bo Sheng is an Associate Professor in the Department of Com-

puter Science at University of Massachusetts Boston. He re-

ceived his B.S. from Nanjing University, and his Ph.D. from

the College of William and Mary, both in Computer Science.

His research interests include big data analytics, mobile com-

puting, Internet of Things, wireless networks, and security.

http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0021
http://about.att.com/story/reinventing_the_cloud_through_edge_computing.html
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0033
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0036
https://www.raspberrypi.org
http://wamp-proto.org
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31028-X/sbref0039

	Revenue sharing in edge-cloud systems: A Game-theoretic perspective
	1 Introduction
	2 Edge-Cloud system
	2.1 Background and related work
	2.2 System architecture overview
	2.3 A Game-Theoretic framework
	2.3.1 Assumptions
	2.3.2 The game

	3 Distribution of computing tasks
	3.1 Objective of task distribution
	3.2 Optimal task distribution formulation
	3.2.1 Batch task arrival
	3.2.2 Dynamic task arrival

	4 Mechanisms for revenue sharing
	4.1 Shapley-value revenue sharing mechanism
	4.1.1 Computing shapley values
	4.1.2 Time complexity of Algorithm 2

	4.2 Direct-contribution-based and ortmann proportional sharing mechanisms
	4.3 Equilibrium state of an edge-Cloud system

	5 Impact of revenue sharing mechanisms on system performance
	5.1 Edge-Cloud emulation system
	5.2 Determining simulation parameters
	5.3 Nash equilibrium and efficiency loss
	5.4 Impact of revenue sharing mechanism
	5.4.1 Utility loss of shapley and ortmann mechanisms compared at provider level and serve level
	5.4.2 Utility loss of direct-contribution-based, shapley, and ortmann mechanisms at provider level
	5.4.3 Numbers of servers at equilibria
	5.4.4 The case of large bandwidth difference () and stringent latency requirements of tasks ()

	5.5 Similar results from google cloud trace
	5.6 Results of simulations with more than two players

	6 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References

