Exercises (Building a Computer)

- Exercise 1. What is the range of non-negative integers that can be represented using 16 bits (ie, binary digits).
- Exercise 2. Express the decimal number 245 in binary, octal, and hexadecimal.
- Exercise 3. Express the three numbers 1001000110 (binary), 1304 (octal), and 37B (hexadecimal), in decimal.
- **Exercise 4.** Consider the decimal numbers x = 77 and y = 84.
- a. Express x and y as 8-bit binary numbers.
- b. Express z = x + y as an 8-bit binary number.
- c. Express -z as an 8-bit binary number.
- Exercise 5. Consider the string "Chocolate".
- a. Encode the string as a decimal sequence.
- b. Encode the string as a binary sequence.

Exercise 6. Consider a 1-bit full adder (FA) with inputs x, y, and c_{in} (carry-in), and outputs z and c_{out} (carry-out). Use the minterm expansion algorithm to derive boolean functions $z = f(x, y, c_{in})$ and $c_{out} = g(x, y, c_{in})$ that respectively express the output z and c_{out} in terms of the inputs x, y, and c_{in} .

SOLUTIONS

Solution 1. $[0, 2^{16} - 1 = 65535]$

Solution 2. 11110101, 365, F5

Solution 3. 582, 708, 891

Solution 4.

a. x = 01001101 and y = 01010100

b. z = 10100001

c. -z = 010111111

Solution 5.

a. $009\ 067\ 104\ 111\ 099\ 111\ 108\ 097\ 116\ 101$

 $b. \ \ 00001001 \ \ 01000011 \ \ 01101000 \ \ 01101111 \ \ 01100011 \ \ 01101111 \ \ 01101100 \ \ 01100001 \ \ 01110100 \ \ 01100101$

Solution 6. The boolean functions $z = f(x, y, c_{in})$ and $c_{out} = g(x, y, c_{in})$:

$$z = \bar{x} \cdot \bar{y} \cdot c_{in} + \bar{x} \cdot y \cdot \bar{c}_{in} + x \cdot \bar{y} \cdot \bar{c}_{in} + x \cdot y \cdot c_{in}$$

$$c_{out} = \bar{x} \cdot y \cdot c_{in} + x \cdot \bar{y} \cdot c_{in} + x \cdot y \cdot \bar{c}_{in} + x \cdot y \cdot c_{in}$$