
Assignment 2 (Control-flow Programs)

Goal: Implement simple programs using control-flow (ie, branch and loop) statements.

Problem 1. (Quadratic Equation) Write a program called quadratic.py (a variant of the one we dicussed in class) that accepts
a (float), b (float), and c (float) as command-line arguments, and writes to standard output the roots of the quadratic equation
ax2 + bx+ c = 0. Your program should report the message “Value of a must not be 0” if a = 0, and the message “Value of
discriminant must not be negative” if b2 − 4ac < 0.

& ~/workspace/controlflow programs

$ python3 quadratic.py 0 1 -3
Value of a must not be 0
$ python3 quadratic.py 1 1 1
Value of discriminant must not be negative
$ python3 quadratic.py 1 -5 6
3.0 2.0

Problem 2. (Wind Chill) Given the temperature t (in Fahrenheit) and the wind speed v (in miles per hour), the National
Weather Service defines the effective temperature (the wind chill) to be

w = 35.74 + 0.6215t+ (0.4275t− 35.75)v0.16.

Write a program called wind_chill.py that accepts t (float) and v (float) as command-line arguments, and writes the wind chill
w to standard output. Your program should report the message “Value of t must be ≤ 50 F” if t > 50, and the message
“Value of v must be > 3 mph” if v ≤ 3.

& ~/workspace/controlflow programs

$ python3 wind_chill.py 51 15
Value of t must be <= 50 F
$ python3 wind_chill.py 32 3
Value of v must be > 3 mph
$ python3 wind_chill.py 32 15
21.588988890532022

Problem 3. (Day of the Week) Write a program called day_of_week.py that accepts m (int), d (int), and y (int) as command-line
arguments, computes the day of the week (0 for Sunday, 1 for Monday, and so on) dow using the formulae below, and writes
the day as a string (“Sunday”, “Monday”, and so on) to standard output.

y0 = y − (14−m)/12,

x0 = y0 + y0/4− y0/100 + y0/400,

m0 = m+ 12× ((14−m)/12)− 2,

dow = (d+ x0 + 31×m0/12) mod 7.

& ~/workspace/controlflow programs

$ python3 day_of_week.py 3 14 1879
Friday
$ python3 day_of_week.py 4 12 1882
Wednesday

Problem 4. (Six-sided Die) Write a program called die.py that simulates the roll of a six-sided die, and writes to standard
output the pattern on the top face.

& ~/workspace/controlflow programs

$ python3 die.py
* *

*
* *
$ python3 die.py

1 / 4



Assignment 2 (Control-flow Programs)

*

*

Problem 5. (Playing Card) Write a program called card.py that simulates the selection of a random card from a standard
deck of 52 playing cards, and writes it to standard output.

& ~/workspace/controlflow programs

$ python3 card.py
3 of Clubs
$ python3 card.py
Ace of Spades

Problem 6. (Dragon Curve) The instructions for drawing a dragon curve are strings of the characters F , L, and R, where
F means “draw a line while moving 1 unit forward”, L means “turn left”, and R means “turn right”. The key to solving
this problem is to note that a curve of order n is a curve of order n− 1 followed by an L followed by a curve of order n− 1
traversed in reverse order, replacing L with R and R with L. Write a program called dragon_curve.py that accepts n (int) as
command-line argument, and writes to standard output the instructions for drawing a dragon curve of order n.

& ~/workspace/controlflow programs

$ python3 dragon_curve.py 0
F
$ python3 dragon_curve.py 1
FLF
$ python3 dragon_curve.py 2
FLFLFRF
$ python3 dragon_curve.py 3
FLFLFRFLFLFRFRF

Problem 7. (Greatest Common Divisor) Write a program called gcd.py that accepts p (int) and q (int) as command-line
arguments, and writes to standard output the greatest common divisor (GCD) of p and q.

& ~/workspace/controlflow programs

$ python3 gcd.py 408 1440
24
$ python3 gcd.py 21 22
1

Problem 8. (Root Finding) Write a program called root.py (a variant of the sqrt.py program we dicussed in class) that accepts
k (int), c (float), and epsilon (float) as command-line arguments, and writes to standard output the kth root of c, up to
epsilon decimal places.

& ~/workspace/controlflow programs

$ python3 root.py 3 2 1e-15
1.2599210498948732
$ python3 root.py 3 27 1e-15
3.0

Problem 9. (Sum of Powers) Write a program called sum_of_powers.py that accepts n (int) and k (int) as command-line
arguments, and writes to standard output the sum 1k + 2k + · · ·+ nk.

& ~/workspace/controlflow programs

$ python3 sum_of_powers.py 15 1
120
$ python3 sum_of_powers.py 10 3
3025

Problem 10. (Factorial Function) Write a program called factorial.py that accepts n (int) as command-line argument, and
writes to standard output the value of n!, which is defined as n! = 1× 2× . . . (n− 1)× n. Note that 0! = 1.

2 / 4



Assignment 2 (Control-flow Programs)

& ~/workspace/controlflow programs

$ python3 factorial.py 0
1
$ python3 factorial.py 5
120

Problem 11. (Fibonacci Function) Write a program called fibonacci.py that accepts n (int) as command-line argument, and
writes to standard output the nth number from the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, . . . ).

& ~/workspace/controlflow programs

$ python3 fibonacci.py 10
55
$ python3 fibonacci.py 15
610

Problem 12. (Primality Test) Write a program called primality_test.py that accepts n (int) as command-line argument, and
writes to standard output if n is a prime number or not.

& ~/workspace/controlflow programs

$ python3 primality_test.py 31
True
$ python3 primality_test.py 42
False

Problem 13. (Counting Primes) Write a program called prime_counter.py that accepts n (int) as command-line argument, and
writes to standard output the number of primes less than or equal to n.

& ~/workspace/controlflow programs

$ python3 prime_counter.py 10
4
$ python3 prime_counter.py 100
25
$ python3 prime_counter.py 1000
168

Problem 14. (Perfect Numbers) A perfect number is a positive integer whose proper divisors add up to the number. For
example, 6 is a perfect number since its proper divisors 1, 2, and 3 add up to 6. Write a program called perfect_numbers.py that
accepts n (int) as command-line argument, and writes to standard output the perfect numbers that are less than or equal to
n.

& ~/workspace/controlflow programs

$ python3 perfect_numbers.py 10
6
$ python3 perfect_numbers.py 1000
6
28
496

Problem 15. (Ramanujan Numbers) Srinivasa Ramanujan was an Indian mathematician who became famous for his intuition
for numbers. When the English mathematician G. H. Hardy came to visit him one day, Hardy remarked that the number of
his taxi was 1729, a rather dull number. Ramanujan replied, “No, Hardy! It is a very interesting number. It is the smallest
number expressible as the sum of two cubes in two different ways.” Verify this claim by writing a program ramanujan_numbers.py

that accepts n (int) as command-line argument, and writes to standard output all integers less than or equal to n that can
be expressed as the sum of two cubes in two different ways. In other words, find distinct positive integers a, b, c, and d such
that a3 + b3 = c3 + d3 ≤ n.

3 / 4



Assignment 2 (Control-flow Programs)

& ~/workspace/controlflow programs

$ python3 ramanujan_numbers.py 10000
1729 = 1^3 + 12^3 = 9^3 + 10^3
4104 = 2^3 + 16^3 = 9^3 + 15^3
$ python3 ramanujan_numbers.py 40000
1729 = 1^3 + 12^3 = 9^3 + 10^3
4104 = 2^3 + 16^3 = 9^3 + 15^3
13832 = 2^3 + 24^3 = 18^3 + 20^3
39312 = 2^3 + 34^3 = 15^3 + 33^3
32832 = 4^3 + 32^3 = 18^3 + 30^3
20683 = 10^3 + 27^3 = 19^3 + 24^3

Files to Submit:

1. quadratic.py

2. wind_chill.py

3. day_of_week.py

4. die.py

5. card.py

6. dragon_curve.py

7. gcd.py

8. root.py

9. sum_of_powers.py

10. factorial.py

11. fibonacci.py

12. primality_test.py

13. prime_counter.py

14. perfect_numbers.py

15. ramanujan_numbers.py

16. notes.txt

Before you submit your files, make sure:

� You do not use concepts from sections beyond Control Flow.

� Your code is adequately commented, follows good programming principles, and meets any problem-specific require-
ments.

� You edit the sections (#1 mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
Section #1 must provide a clear high-level description of each problem in no more than 100 words.

4 / 4


