
Introduction to Programming in Python
Assignment 2 (Control-flow Programs) Discussion



Problem 1 (Quadratic Equation)

L quadratic.py

Command-line input a (float), b (float), and c (float)

Standard output roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/controlflow programs

$ python3 quadratic.py 0 1 -3

Value of a must not be 0

$ python3 quadratic.py 1 1 1

Value of discriminant must not be negative

$ python3 quadratic.py 1 -5 6

3.0 2.0



Problem 1 (Quadratic Equation)

Accept a (float), b (float), and c (float) as command-line arguments

If a = 0, write the message “Value of a must not be 0”

Otherwise, set discriminant to b2 − 2ac

If discriminant < 0, write the message “Value of discriminant must not be negative”

Otherwise, set root1 to −b+
√
discriminant
2a

and root2 to −b−
√
discriminant
2a

Write “root1 root2”



Problem 2 (Wind Chill)

L wind chill.py

Command-line input temperature t (float) and wind speed v (float)

Standard output wind chill

& ~/workspace/controlflow programs

$ python3 wind_chill.py 51 15

Value of t must be <= 50 F

$ python3 wind_chill.py 32 3

Value of v must be > 3 mph

$ python3 wind_chill.py 32 15

21.588988890532022



Problem 2 (Wind Chill)

Accept t (float) and v (float) as command-line arguments

If t > 50, write the message “Value of t must be <= 50 F”

Otherwise, if v ≤ 3, write the message “Value of v must be > 3 mph”

Otherwise, set w to the wind chill value computed as

w = 35.74 + 0.6215t + (0.4275t − 35.75)v0.16

Write w



Problem 3 (Day of the Week)

L day of week.py

Command-line input m (int), d (int), and y (int)

Standard output day of the week (Sunday, Monday, etc.)

& ~/workspace/straightline programs

$ python3 day_of_week.py 3 14 1879

Friday

$ python3 day_of_week.py 4 12 1882

Wednesday



Problem 3 (Day of the Week)

Accept m (int), d (int), and y (int) as command-line arguments

Compute dow (day of week) as follows

y0 = y − (14−m)/12

x0 = y0 + y0/4− y0/100 + y0/400

m0 = m + 12× ((14−m)/12)− 2

dow = (d + x0 + 31×m0/12) mod 7

Write the day of week corresponding to dow (“Sunday” for 0, “Monday” for 1, etc.)



Problem 4 (Six-sided Die)

L die.py

Standard output simulates the roll of a six-sided die and outputs the pattern on the top face

& ~/workspace/controlflow programs

$ python3 die.py

* *

*

* *

$ python3 die.py

*

*



Problem 4 (Six-sided Die)

Set value to a random integer from [1, 6]

Set output to an appropriate string based on value

The string format is ".....\n.....\n.....", where each . is either a space or a *

For example, if value = 6, the string should be "* * *\n \n* * *"

Write output



Problem 5 (Playing Card)

L card.py

Standard output selects a random card from a standard deck of 52 playing cards and outputs the card

& ~/workspace/controlflow programs

$ python3 card.py

3 of Clubs

$ python3 card.py

Ace of Spades



Problem 5 (Playing Card)

Set rank to a random integer from [2, 14]

Set rankStr to a string corresponding to rank — the ranks are 2, 3, . . . , Jack, Queen, King , and Ace

Set suit to a random integer from [1, 4]

Set suitStr to a string corresponding to suit — the suits are Clubs, Diamonds, Hearts, and Spades

Write “rankStr of suitStr”



Problem 6 (Dragon Curve)

L dragon curve.py

Command-line input n (int)

Standard output instructions for drawing a dragon curve of order n

& ~/workspace/controlflow programs

$ python3 dragon_curve.py 0

F

$ python3 dragon_curve.py 1

FLF

$ python3 dragon_curve.py 2

FLFLFRF

$ python3 dragon_curve.py 3

FLFLFRFLFLFRFRF



Problem 6 (Dragon Curve)

Accept n (int) as command-line argument

Set dragon and nogard to the string “F”

For each i ∈ [1, n]

- Exchange dragon with “dragon L nogard” and nogard with “dragon R nogard”

Write dragon



Problem 7 (Greatest Common Divisor)

L gcd.py

Command-line input p (int) and q (int)

Standard output greatest common divisor (GCD) of p and q

& ~/workspace/controlflow programs

$ python3 gcd.py 408 1440

24

$ python3 gcd.py 21 22

1



Problem 7 (Greatest Common Divisor)

Accept p (int) and q (int) as command-line arguments

Repeat as long as p mod q ̸= 0

- Exchange p with q and q with p mod q

Write q



Problem 8 (Root Finding)

L root.py

Command-line input k (int), c (float), and epsilon (float)

Standard output k
√
c up to epsilon decimal places

& ~/workspace/controlflow programs

$ python3 root.py 3 2 1e-15

1.2599210498948732

$ python3 root.py 3 27 1e-15

3.0



Problem 8 (Root Finding)

Accept k (int), c (float), and epsilon (float) as command-line arguments

Set t to c

Repeat as long as |1− c/tk | > ϵ

- Set t to t − f (t)/f ′(t), where f (t) = tk − c and f ′(t) = ktk−1

Write t



Problem 9 (Sum of Powers)

L sum of powers.py

Command-line input n (int) and k (int)

Standard output the sum 1k + 2k + · · ·+ nk

& ~/workspace/controlflow programs

$ python3 sum_of_powers.py 15 1

120

$ python3 sum_of_powers.py 10 3

3025



Problem 9 (Sum of Powers)

Accept n (int) and k (int) as command-line arguments

Set total to 0

For each i ∈ [1, n]

- Increment total by ik

Write total



Problem 10 (Factorial Function)

L factorial.py

Command-line input n (int)

Standard output n!

& ~/workspace/controlflow programs

$ python3 factorial.py 0

1

$ python3 factorial.py 5

120



Problem 10 (Factorial Function)

Accept n (int) as command-line argument

Set result to 1

For each i ∈ [1, n]

- Set result to result ∗ i

Write result



Problem 11 (Fibonacci Function)

L fibonacci.py

Command-line input n (int)

Standard output the nth number from the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, . . . )

& ~/workspace/controlflow programs

$ python3 fibonacci.py 10

55

$ python3 fibonacci.py 15

610



Problem 11 (Fibonacci Function)

Accept n (int) as command-line argument

Set a to -1, b to 1, and i to 0

Repeat as long as i ≤ n

- Exchange a with b and b with a+ b

- Increment i by 1

Write b



Problem 12 (Primality Test)

L primality test.py

Command-line input n (int)

Standard output True if n is prime, and False otherwise

& ~/workspace/controlflow programs

$ python3 primality_test.py 31

True

$ python3 primality_test.py 42

False



Problem 12 (Primality Test)

Accept n (int) as command-line argument

Set i to 2

Repeat as long as i ≤ n/i

- If i divides n, break

- Increment i by 1

If i > n/i , write True; otherwise, write False



Problem 13 (Counting Primes)

L prime counter.py

Command-line input n (int)

Standard output number of primes less than or equal to n

& ~/workspace/controlflow programs

$ python3 prime_counter.py 10

4

$ python3 prime_counter.py 100

25

$ python3 prime_counter.py 1000

168



Problem 13 (Counting Primes)

Accept n (int) as command-line argument

Set count to 0

For each i ∈ [2, n]

- Set j to 2

- Repeat as long as j ≤ i/j

- If j divides i , break
- Increment j by 1

- If j > i/j , increment count by 1

Write count



Problem 14 (Perfect Numbers)

L perfect numbers.py

Command-line input n (int)

Standard output perfect numbers that are less than or equal to n

& ~/workspace/controlflow programs

$ python3 perfect_numbers.py 10

6

$ python3 perfect_numbers.py 1000

6

28

496



Problem 14 (Perfect Numbers)

Accept n (int) as command-line argument

For each i ∈ [2, n]

- Set total to 0

- For each j ∈ [1, i/2]

- If j divides i , increment total by j

- If total = i , write i



Problem 15 (Ramanujan Numbers)

L ramanujan numbers.py

Command-line input n (int)

Standard output integers ≤ n that can be expressed as the sum of two cubes in two different ways

& ~/workspace/controlflow programs

$ python3 ramanujan_numbers.py 10000

1729 = 1^3 + 12^3 = 9^3 + 10^3

4104 = 2^3 + 16^3 = 9^3 + 15^3

$ python3 ramanujan_numbers.py 40000

1729 = 1^3 + 12^3 = 9^3 + 10^3

4104 = 2^3 + 16^3 = 9^3 + 15^3

13832 = 2^3 + 24^3 = 18^3 + 20^3

39312 = 2^3 + 34^3 = 15^3 + 33^3

32832 = 4^3 + 32^3 = 18^3 + 30^3

20683 = 10^3 + 27^3 = 19^3 + 24^3



Problem 15 (Ramanujan Numbers)

Accept n as command-line argument

Set a (int) to 1

Repeat as long as a3 ≤ n

- Set b (int) to a+ 1

- Repeat as long as a3 + b3 ≤ n

- Set c (int) to a+ 1
- Repeat as long as c3 ≤ n

- Set d (int) to c + 1
- Repeat as long as c3 + d3 ≤ n

- Set x (int) to a3 + b3 and y (int) to c3 + d3

- If x = y , write “x = â 3 + b 3̂ = c 3̂ + d 3̂”
- Increment d by 1

- Increment c by 1

- Increment b by 1

- Increment a by 1


	Problem 1 (Quadratic Equation)
	Problem 2 (Wind Chill)
	Problem 3 (Day of the Week)
	Problem 4 (Six-sided Die)
	Problem 5 (Playing Card)
	Problem 6 (Dragon Curve)
	Problem 7 (Greatest Common Divisor)
	Problem 8 (Root Finding)
	Problem 9 (Sum of Powers)
	Problem 10 (Factorial Function)
	Problem 11 (Fibonacci Function)
	Problem 12 (Primality Test)
	Problem 13 (Counting Primes)
	Problem 14 (Perfect Numbers)
	Problem 15 (Ramanujan Numbers)

