Introduction to Programming in Python

Building a Computer: Logic Circuits

Outline

1 Boolean Functions

2 Logic Circuits

Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

 $\label{eq:Aboolean function} A \ boolean \ transfer and \ logical \ operations$

The three basic boolean functions: ${ t not}(x)=ar x$, ${ t or}(x,y)=x+y$, and ${ t and}(x,y)=x\cdot y$

Boolean Functions · Truth Tables		
The truth table for a boolean function is a listin	ng of all possible input values, to	gether with the output value

Boolean Functions · Truth Tables

The truth table for a boolean function is a listing of all possible input values, together with the output value

Truth tables for not, or, and and functions

$\begin{bmatrix} x & \bar{x} \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$		
	х	x
1 0	0	1
1 0	1	0

х	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

х	у	x · y
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Functions · Minterm Expansion Algorithm
Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

- 1. Write down the truth table for the boolean function
- 2. Delete all rows from the truth table where the value of the function is 0

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

- 1. Write down the truth table for the boolean function
- 2. Delete all rows from the truth table where the value of the function is 0
- 3. For each remaining row, create a "minterm" as follows

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

- 1. Write down the truth table for the boolean function
- 2. Delete all rows from the truth table where the value of the function is 0
- 3. For each remaining row, create a "minterm" as follows
- a. For each variable x: if its value in that row is 1, write x; otherwise, write \bar{x}

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

- 1. Write down the truth table for the boolean function
- 2. Delete all rows from the truth table where the value of the function is $\boldsymbol{0}$
- 3. For each remaining row, create a "minterm" as follows
 - a. For each variable x: if its value in that row is 1, write x; otherwise, write \bar{x}
 - b. Combine all of the variables using ·

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

- 1. Write down the truth table for the boolean function
- 2. Delete all rows from the truth table where the value of the function is $\boldsymbol{0}$
- 3. For each remaining row, create a "minterm" as follows
- a. For each variable x: if its value in that row is 1, write x; otherwise, write \bar{x}
 - b. Combine all of the variables using \cdot
- 4. Combine all of the minterms using +

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

х	У	x =>> y	minterm
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Boolean Functions · Minterm Expansion Algorithm

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

x	у	$x \Longrightarrow y$	minterm
0	0	1	
0	1	1	
		0	
1	1	1	

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

X	У	$x \implies y$	minterm
0	0	1	$ar{x}\cdotar{y}$
0	1	1	
	0	0	
1	1	1	

Boolean Functions · Minterm Expansion Algorithm

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

x	у	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x}\cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
1	1	1	

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

х	у	x =>> y	minterm
0	0	1	$\bar{x}\cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
1	1	1	$x \cdot y$

Boolean Functions · Minterm Expansion Algorithm

Example: consider the proposition "if you score over 93% in this course, then you will get an A"

The proposition is described by the implication function $(x \implies y)$

х	У	$x \implies y$	minterm
0	0	1	$\bar{x}\cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
	0	0	
1	1	1	$x \cdot y$

Therefore, implication $(x, y) = \bar{x} \cdot \bar{y} + \bar{x} \cdot y + x \cdot y$

Logic Circuits

The circuits (called gates) that implement the not, or, and and functions

Logic Circuits

The circuits (called gates) that implement the not, or, and and functions

The circuit for the $_{\text{implication}}$ function $\bar{x}\cdot\bar{y}+\bar{x}\cdot y+x\cdot y$

Logic Circuits · Full Adder

A full adder (FA) circuit can add two 1-bit numbers (with carry) to produce a 2-bit result

х	у	Cin	z	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic Circuits · Full Adder
An n -bit ripple-carry adder for adding two n -bit numbers is n FA circuits chained together

Logic Circuits · Full Adder

An n-bit ripple-carry adder for adding two n-bit numbers is n FA circuits chained together

Example (2-bit ripple-carry adder for adding two 2-bit numbers)

$\textbf{Logic Circuits} \cdot \mathsf{Memory}$

Truth table for a nor gate (or followed by not)

х	у	$\overline{\mathbf{x}+\mathbf{y}}$
0	0	1
0	1	0
1	0	0
1	1	0

$\textbf{Logic Circuits} \cdot \mathsf{Memory}$

Truth table for a nor gate (or followed by not)

x	у	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two $_{\mathtt{nor}}$ gates

s	R	Q	Q
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1

$\textbf{Logic Circuits} \cdot \mathsf{Memory}$

Truth table for a nor gate (or followed by not)

х	У	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

S	R	Q	Q
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1

Billion latches can be combined to produce a 1GB Random Access Memory (RAM) module