
Assignment 3 (Mozart Waltz Generator)

Goal: In 1787, Wolfgang Amadeus Mozart created a dice game (Mozart’s Musikalisches Würfelspiel), in which you compose
a two-part waltz by pasting together 32 of 272 pre-composed musical elements at random. The goal of this assignment is to
implement Mozart’s game by writing a program to generate a two-part waltz and another program to play the waltz.

Part I: Warmup Problems

The problems in this part of the assignment are intended to give you solid practice on concepts (working with one- and
two-dimensional lists) needed to solve the problems in Part II.

Problem 1. (Reverse) Write a program called reverse.py that accepts strings from standard input, and writes them in reverse
order to standard output.

& ~/workspace/mozart waltz generator

$ python3 reverse.py
b o l t o n
<ctrl -d>
n o t l o b
$ python3 reverse.py
m a d a m
<ctrl -d>
m a d a m

Problem 2. (Euclidean Distance) Write a program called distance.py that accepts n (int) as command-line argument, two
n-dimensional lists x and y of floats from standard input, and writes to standard output the Euclidean distance between two
vectors represented by x and y. The Euclidean distance is calculated as the square root of the sums of the squares of the
differences between the corresponding entries.

& ~/workspace/mozart waltz generator

$ python3 distance.py 2
1 0 <enter >
0 1 <enter >
1.4142135623730951
$ python3 distance.py 5
-9 1 10 -1 1 <enter >
-5 9 6 7 4 <enter >
13.0

Problem 3. (Birthday Problem) Suppose that people enter an empty room until a pair of people share a birthday. On
average, how many people will have to enter before there is a match? Write a program called birthday.py that accepts trials
(int) as command-line argument, runs trials experiments to estimate this quantity — each experiment involves sampling
individuals until a pair of them share a birthday, and writes the value to standard output.

& ~/workspace/mozart waltz generator

$ python3 birthday.py 1000
24
$ python3 birthday.py 1000
25

Problem 4. (Transpose) Write a program called transpose.py that accepts m (int) and n (int) as command-line arguments,
m×n floats from standard input representing the elements of an m×n matrix a, and writes to standard output the transpose
of a. Recall that the transpose of an m-by-n matrix A is an n-by-m matrix B such that Bij = Aji, where 0 ≤ i < n and
0 ≤ j < m.

& ~/workspace/mozart waltz generator

$ python3 transpose.py 2 2
1 2 <enter >
3 4 <enter >
1.0 3.0
2.0 4.0

1 / 4



Assignment 3 (Mozart Waltz Generator)

$ python3 transpose.py 2 3
1 2 3 <enter >
4 5 6 <enter >
1.0 4.0
2.0 5.0
3.0 6.0

Problem 5. (Pascal’s Triangle) Pascal’s triangle Pn is a triangular array with n+1 rows, each listing the coefficients of the
binomial expansion (x+ y)i, where 0 ≤ i ≤ n. For example, P4 is the triangular array:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

The term Pn(i, j) is calculated as Pn(i− 1, j − 1) + Pn(i− 1, j), where 0 ≤ i ≤ n and 1 ≤ j < i, with Pn(i, 0) = Pn(i, i) = 1
for all i. Write a program called pascal.py that accepts n (int) as command-line argument, and writes Pn to standard output.

& ~/workspace/mozart waltz generator

$ python3 pascal.py 3
1
1 1
1 2 1
1 3 3 1
$ python3 pascal.py 10
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

Part II: Mozart Waltz Generator

Waltz: The waltz consists of two parts — the minuet and the trio. Each is comprised of 16 measures, which are generated
at random according to a fixed set of rules, as described below.

� Minuet The minuet consists of 16 measures. There are 176 possible minuet measures, named M1.wav through M176.wav in
the data directory. To determine which one to play, roll two fair dice, and use the following table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-----------------------------------------------------------------------------------

2 96 22 141 41 105 122 11 30 70 121 26 9 112 49 109 14
3 32 6 128 63 146 46 134 81 117 39 126 56 174 18 116 83
4 69 95 158 13 153 55 110 24 66 139 15 132 73 58 145 79
5 40 17 113 85 161 2 159 100 90 176 7 34 67 160 52 170
6 148 74 163 45 80 97 36 107 25 143 64 125 76 136 1 93
7 104 157 27 167 154 68 118 91 138 71 150 29 101 162 23 151
8 152 60 171 53 99 133 21 127 16 155 57 175 43 168 89 172
9 119 84 114 50 140 86 169 94 120 88 48 166 51 115 72 111

10 98 142 42 156 75 129 62 123 65 77 19 82 137 38 149 8
11 3 87 165 61 135 47 147 33 102 4 31 164 144 59 173 78
12 54 130 10 103 28 37 106 5 35 20 108 92 12 124 44 131

For example, if you roll a 4 and 6 for measure 8, then play measure 123 (ie, data/M123.wav).

� Trio The trio also consists of 16 measures. There are 96 possible trio measures named T1.wav through T96.wav in the data

directory. To determine which one to play, roll one fair die, and use the following table:

2 / 4



Assignment 3 (Mozart Waltz Generator)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
------------------------------------------------------------------
1 72 6 59 25 81 41 89 13 36 5 46 79 30 95 19 66
2 56 82 42 74 14 7 26 71 76 20 64 84 8 35 47 88
3 75 39 54 1 65 43 15 80 9 34 93 48 69 58 90 21
4 40 73 16 68 29 55 2 61 22 67 49 77 57 87 33 10
5 83 3 28 53 37 17 44 70 63 85 32 96 12 23 50 91
6 18 45 62 38 4 27 52 94 11 92 24 86 51 60 78 31

For example, if you roll a 4 for measure 13, then play measure 57 (ie, data/T57.wav).

Composition: There are 1116× 616 = 129, 629, 238, 163, 050, 258, 624, 287, 932, 416 possible compositions, some of which are
more likely than others. Since this is a huge number of different possibilities, each time you play the game you are likely
to compose a piece of music that has never been heard before! Mozart carefully constructed the measures to obey a rigid
harmonic structure, so each waltz reflects Mozart’s distinct style. Unfortunately, due to the rigidity, the process never results
in anything truly extraordinary.

Problem 6. (Generating the Waltz ) Write a program called generatewaltz.py that accepts the minuet and trio tables from
standard input, generates a random sequence of 32 measures according to the rules described above, and writes the sequence
to standard output.

& ~/workspace/mozart waltz generator

$ python3 generatewaltz.py < data/mozart.txt
69 95 27 103 105 129 21 24 66 155 48 34 43 18 89 78 72 39 59 68 29 7 15 94 76 34 93 77 12 95 47 10
$ python3 generatewaltz.py < data/mozart.txt
32 84 27 50 153 97 36 100 16 4 150 34 51 115 1 78 18 3 59 74 37 43 52 71 9 20 32 79 57 35 90 10

Problem 7. (Playing the Waltz ) Write a program called playwaltz.py that accepts from standard input, a sequence of 32
integers representing the 32 measures of a waltz, and plays the waltz to standard audio. Before playing any audio, your
program must check if the inputs are erroneous, and if so, must call sys.exit(message) to exit the program with an appropriate
error message. Your program must check for the following errors:

� If the number of measures is not 32, exit with the message “A waltz must contain exactly 32 measures”.

� If a minuet measure is not from [1, 176], exit with the message “A minuet measure must be from [1, 176]”.

� If a trio measure is not from [1, 96], exit with the message “A trio measure must be from [1, 96]”.

Note: No audio must be played in the event of an error.

& ~/workspace/mozart waltz generator

$ python3 generatewaltz.py < data/mozart.txt | python3 playwaltz.py

Data: The data directory contains:

� The 272 minuet and trio measures as .wav files.

� The values of the above minuet and trio tables in mozart.txt.

� A sample waltz, mozart.wav, generated using the process described above.

Files to Submit:

1. reverse.py

2. distance.py

3 / 4



Assignment 3 (Mozart Waltz Generator)

3. birthday.py

4. transpose.py

5. pascal.py

6. generatewaltz.py

7. playwaltz.py

8. notes.txt

Before you submit your files, make sure:

� You do not use concepts from sections beyond Input and Output.

� Your code follows good programming principles (ie, it is clean and well-organized; uses meaningful variable names;
and includes useful comments).

� You edit the sections (#1 mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate. In
section #1, for each problem, you must include in nore more than 100 words: a short, high-level description of the
problem; your approach to solve it; and any issues you encountered and if/how you managed to solve them.

Acknowledgement: Part II of this assignment is an adaptation of the Mozart Waltz Generator assignment developed at
Princeton University by David Costanzo and Kevin Wayne.

4 / 4


