
Introduction to Programming in Python
Assignment 3 (Mozart Waltz Generator) Discussion



Part I (Warmup Problems) · Problem 1 (Reverse)

L reverse.py

Standard input a sequence of strings

Standard output the strings in reverse order

& ~/workspace/mozart waltz generator

$ python3 reverse.py

b o l t o n

<ctrl -d>

n o t l o b

$ python3 reverse.py

m a d a m

<ctrl -d>

m a d a m



Part I (Warmup Problems) · Problem 1 (Reverse)

Read all strings from standard input into a list a (use stdio.readAllStrings())

Set n to the size of a

For each i ∈ [0, n/2)

- Exchange a[i ] with a[n − i − 1]

For each i ∈ [0, n)

- If i < n − 1, write a[i ] with a space after; otherwise, write a[i ] with a newline after



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

L distance.py

Command-line input n (int)

Standard input two size-n lists x and y of floats

Standard output the Euclidean distance between the two vectors represented by x and y

& ~/workspace/mozart waltz generator

$ python3 distance.py 2

1 0 <enter >

0 1 <enter >

1.4142135623730951

$ python3 distance.py 5

-9 1 10 -1 1 <enter >

-5 9 6 7 4 <enter >

13.0



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

Accept n (int) as command-line argument

Create an empty list x

For each i ∈ [0, n)

- Append to x a float read from standard input (use stdio.readFloat())

Create a list y of floats similar to x

Set distance to 0.0

For each i ∈ [0, n)

- Increment distance by (x[i ]− y [i ])2

Write
√
distance



Part I (Warmup Problems) · Problem 3 (Birthday Problem)

L birthday.py

Command-line input trials (int)

Standard output average number of individuals that must be sampled until there is a match in their birthdays

& ~/workspace/mozart waltz generator

$ python3 birthday.py 1000

24

$ python3 birthday.py 1000

25



Part I (Warmup Problems) · Problem 3 (Birthday Problem)

Set DAYS_PER_YEAR to 365

Accept trials (int) as command-line argument

Set count to 0

For each t in [0, trials)

- Set birthdaysSeen to a list of size DAYS_PER_YEAR with all elements set to False (use stdarray.create1D())

- Repeat forever

- Increment count by 1
- Set birthday to a random int from [0, DAYS_PER_YEAR)
- If birthday was seen before, break; otherwise, record that we are seeing it now

Write count/trials (use integer division)



Part I (Warmup Problems) · Problem 4 (Transpose)

L transpose.py

Command-line input m (int) and n (int)

Standard input m × n floats representing the elements of an m × n matrix a

Standard output the transpose of a

& ~/workspace/mozart waltz generator

$ python3 transpose.py 2 2

1 2 <enter >

3 4 <enter >

1.0 3.0

2.0 4.0

$ python3 transpose.py 2 3

1 2 3 <enter >

4 5 6 <enter >

1.0 4.0

2.0 5.0

3.0 6.0



Part I (Warmup Problems) · Problem 4 (Transpose)

Accept m (int) and n (int) as command-line arguments

Create an m × n list a with all elements set to None (use stdarray.create2D())

For each i ∈ [0,m)

- For each j ∈ [0, n)

- Set a[i ][j] to a float read from standard input (use stdio.readFloat())

Create an n ×m list c with all elements set to None (use stdarray.create2D())

For each i ∈ [0, n)

- For each j ∈ [0,m)

- Set c[i ][j] to a[j][i ]

For each i ∈ [0, n)

- For each j ∈ [0,m)

- If j < m − 1, write c[i ][j] with a space after; otherwise, write c[i ][j] with a newline after



Part I (Warmup Problems) · Problem 5 (Pascal’s Triangle)

L pascal.py

Command-line input n (int)

Standard output Pascal’s triangle Pn

& ~/workspace/mozart waltz generator

$ python3 pascal.py 5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1



Part I (Warmup Problems) · Problem 5 (Pascal’s Triangle)

Accept n (int) as command-line argument

Create a list a of size n + 1 with all elements set to None (use stdarray.create1D())

For each i ∈ [0, n]

- Set a[i ] to a list of size i + 1 with all elements set to 1 (use stdarray.create1D())

For each i ∈ [0, n]

- For each j ∈ [1, i)

- Set a[i ][j] to a[i − 1][j − 1] + a[i − 1][j]

For each i ∈ [0, n]

- For each j ∈ [0, i ]

- If j < i , write a[i ][j] with a space after; otherwise, write a[i ][j] with a newline after



Part II (Mozart Waltz Generator) · Introduction

A waltz consists of two parts, the minuet and the trio, each comprised of 16 measures

The file data/mozart.wav provides an example of a waltz — play it manually to get an idea of what a waltz sounds like

There are 176 possible minuet measures (labeled 1, 2, . . . 176) and 96 possible trio measures (labeled 1, 2, . . . , 96)

Corresponding to each minuet and trio measure, there’s an audio (.wav) file under the data directory that we can play

Example: data/M167.wav corresponds to the minuet measure 167 and data/T42.wav corresponds to the trio measure 42 — play
these files manually to get a sense of what each measure sounds like

Goal: write a program to generate a waltz and another program to play the waltz



Part II (Mozart Waltz Generator) · Generating a Waltz

The first 16 minuet measures of the waltz are generated as follows

- To generate the jth measure, roll two fair dice (let’s call the sum of the rolls i)

- Write the number in row i and column j of the following minuet table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-----------------------------------------------------------------------------------

2 96 22 141 41 105 122 11 30 70 121 26 9 112 49 109 14

3 32 6 128 63 146 46 134 81 117 39 126 56 174 18 116 83

4 69 95 158 13 153 55 110 24 66 139 15 132 73 58 145 79

5 40 17 113 85 161 2 159 100 90 176 7 34 67 160 52 170

6 148 74 163 45 80 97 36 107 25 143 64 125 76 136 1 93

7 104 157 27 167 154 68 118 91 138 71 150 29 101 162 23 151

8 152 60 171 53 99 133 21 127 16 155 57 175 43 168 89 172

9 119 84 114 50 140 86 169 94 120 88 48 166 51 115 72 111

10 98 142 42 156 75 129 62 123 65 77 19 82 137 38 149 8

11 3 87 165 61 135 47 147 33 102 4 31 164 144 59 173 78

12 54 130 10 103 28 37 106 5 35 20 108 92 12 124 44 131

- For example if j = 4 and i = 7 (from die rolls 4 and 3), then write 167



Part II (Mozart Waltz Generator) · Generating a Waltz

The next 16 trio measures of the waltz are generated as follows

- To generate the jth measure, roll one fair die (let’s call the roll i)

- Write the number in row i and column j of the following trio table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

------------------------------------------------------------------

1 72 6 59 25 81 41 89 13 36 5 46 79 30 95 19 66

2 56 82 42 74 14 7 26 71 76 20 64 84 8 35 47 88

3 75 39 54 1 65 43 15 80 9 34 93 48 69 58 90 21

4 40 73 16 68 29 55 2 61 22 67 49 77 57 87 33 10

5 83 3 28 53 37 17 44 70 63 85 32 96 12 23 50 91

6 18 45 62 38 4 27 52 94 11 92 24 86 51 60 78 31

- For example if j = 3 and i = 2 (from die roll 2), then write 42

The minuet and trio tables are defined in the file data/mozart.txt



Part II (Mozart Waltz Generator) · Playing a Waltz

The first 16 minuet measures of the waltz are played as follows

- To play the ith measure, play the .wav file under data whose name starts with “M” and is followed by the number i

- For example, if i = 167, play the file data/M167.wav

The next 16 trio measures of the waltz are played as follows

- To play the ith measure, play the .wav file under data whose name starts with “T” and is followed by the number i

- For example, if i = 42, play the file data/T42.wav



Part II (Mozart Waltz Generator) · Problem 6 (Generating the Waltz)

L generatewaltz.py

Standard input the minuet and trio tables

Standard output a random sequence of 32 measures according to the rules described above

& ~/workspace/mozart waltz generator

$ python3 generatewaltz.py < data/mozart.txt

69 95 27 103 105 129 21 24 66 155 48 34 43 18 89 78 72 39 59 68 29 7 15 94 76 34 93 77 12 95 47 10

$ python3 generatewaltz.py < data/mozart.txt

32 84 27 50 153 97 36 100 16 4 150 34 51 115 1 78 18 3 59 74 37 43 52 71 9 20 32 79 57 35 90 10



Part II (Mozart Waltz Generator) · Problem 6 (Generating the Waltz)

Create a 2D list called minuetMeasures with dimensions 11× 16 (use stdarray.create2D())

Populate minuetMeasures with values read from standard input (use stdio.readInt())

Create a 2D list called trioMeasures with dimensions 6× 16 (use stdarray.create2D())

Populate trioMeasures with values read from standard input (use stdio.readInt())

For each j ∈ [0, 15]

- Set i to the sum of two die rolls (each a random number from [1, 6])

- Write minuetMeasures[i − 2][j] with a space after

For each j ∈ [0, 15]

- Set i to the value of a die roll (a random number from [1, 6])

- Write trioMeasures[i − 1][j] with a space after

Write a newline



Part II (Mozart Waltz Generator) · Problem 7 (Playing the Waltz)

L playwaltz.py

Standard input a sequence of 32 measures of a waltz

Standard audio the waltz

& ~/workspace/mozart waltz generator

$ python3 generatewaltz.py < data/mozart.txt | python3 playwaltz.py



Part II (Mozart Waltz Generator) · Problem 7 (Playing the Waltz)

Set measures to a list of ints (representing measures of a waltz) read from standard input (use stdio.readAllInts())

Exit the program with the message “A waltz must contain exactly 32 measures” if measures does not contain 32 values
(use sys.exit())

Exit the program with the message “A minuet measure must be from [1, 176]” if the any of the first 16 values of
measures is not from the interval [1, 176] (use sys.exit())

Exit the program with the message “A trio measure must be from [1, 96]” if the any of the last 16 values of measures is
not from the interval [1, 96] (use sys.exit())

For each v of the first 16 values in measures

- Set filename to “data/M” + v

- Play the audio file with the name filename (use stdaudio.playFile())

For each v of the last 16 values in measures

- Set filename to “data/T” + v

- Play the audio file with the name filename (use stdaudio.playFile())


	Part I (Warmup Problems)
	Problem 1 (Reverse)
	Problem 2 (Euclidean Distance)
	Problem 3 (Birthday Problem)
	Problem 4 (Transpose)
	Problem 5 (Pascal's Triangle)

	Part II (Mozart Waltz Generator)
	Introduction
	Generating a Waltz
	Playing a Waltz
	Problem 6 (Generating the Waltz)
	Problem 7 (Playing the Waltz)


