
Introduction to Programming in Python
Building a Computer: Representing Information

Outline

1 Non-negative Integers

2 Binary Arithmetic

3 Negative Integers

4 Real Numbers

5 Characters

6 Strings

7 Structured Information

Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10

Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10

Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10

Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10

Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310

Non-negative Integers

Dec Bin Oct Hex

0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Non-negative Integers

Dec Bin Oct Hex

0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Binary Arithmetic

Example (addition in binary)

1 1 1 1

1 0 1 0 1 1 0 1 173

+ 0 0 1 1 0 1 0 0 52

1 1 1 0 0 0 0 1 225

Binary Arithmetic

Example (addition in binary)

1 1 1 1

1 0 1 0 1 1 0 1 173

+ 0 0 1 1 0 1 0 0 52

1 1 1 0 0 0 0 1 225

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000

Negative Integers

The range of signed integers that can be represented using n bits is [−2n−1, 2n−1 − 1]

Example (signed 4-bit integers)

Dec Bin

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Negative Integers

The range of signed integers that can be represented using n bits is [−2n−1, 2n−1 − 1]

Example (signed 4-bit integers)

Dec Bin

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Negative Integers

The range of signed integers that can be represented using n bits is [−2n−1, 2n−1 − 1]

Example (signed 4-bit integers)

Dec Bin

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510

Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510

Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510

Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510

Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510

Characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: ␀ 016: ␐ 032: ␠ 048: 0 064: @ 080: P 096: ‘ 112: p

001: ␁ 017: ␑ 033: ! 049: 1 065: A 081: Q 097: a 113: q

002: ␂ 018: ␒ 034: " 050: 2 066: B 082: R 098: b 114: r

003: ␃ 019: ␓ 035: # 051: 3 067: C 083: S 099: c 115: s

004: ␄ 020: ␔ 036: $ 052: 4 068: D 084: T 100: d 116: t

005: ␅ 021: ␕ 037: % 053: 5 069: E 085: U 101: e 117: u

006: ␆ 022: ␖ 038: & 054: 6 070: F 086: V 102: f 118: v

007: ␇ 023: ␗ 039: ’ 055: 7 071: G 087: W 103: g 119: w

008: ␈ 024: ␘ 040: (056: 8 072: H 088: X 104: h 120: x

009: ␉ 025: ␙ 041:) 057: 9 073: I 089: Y 105: i 121: y

010: ␊ 026: ␚ 042: * 058: : 074: J 090: Z 106: j 122: z

011: ␋ 027: ␛ 043: + 059: ; 075: K 091: [107: k 123: {

012: ␌ 028: ␜ 044: , 060: < 076: L 092: \ 108: l 124: |

013: ␍ 029: ␝ 045: - 061: = 077: M 093:] 109: m 125: }

014: ␎ 030: ␞ 046: . 062: > 078: N 094: ^ 110: n 126: ~

015: ␏ 031: ␟ 047: / 063: ? 079: O 095: _ 111: o 127: ␡

0 – 31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more

Characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: ␀ 016: ␐ 032: ␠ 048: 0 064: @ 080: P 096: ‘ 112: p

001: ␁ 017: ␑ 033: ! 049: 1 065: A 081: Q 097: a 113: q

002: ␂ 018: ␒ 034: " 050: 2 066: B 082: R 098: b 114: r

003: ␃ 019: ␓ 035: # 051: 3 067: C 083: S 099: c 115: s

004: ␄ 020: ␔ 036: $ 052: 4 068: D 084: T 100: d 116: t

005: ␅ 021: ␕ 037: % 053: 5 069: E 085: U 101: e 117: u

006: ␆ 022: ␖ 038: & 054: 6 070: F 086: V 102: f 118: v

007: ␇ 023: ␗ 039: ’ 055: 7 071: G 087: W 103: g 119: w

008: ␈ 024: ␘ 040: (056: 8 072: H 088: X 104: h 120: x

009: ␉ 025: ␙ 041:) 057: 9 073: I 089: Y 105: i 121: y

010: ␊ 026: ␚ 042: * 058: : 074: J 090: Z 106: j 122: z

011: ␋ 027: ␛ 043: + 059: ; 075: K 091: [107: k 123: {

012: ␌ 028: ␜ 044: , 060: < 076: L 092: \ 108: l 124: |

013: ␍ 029: ␝ 045: - 061: = 077: M 093:] 109: m 125: }

014: ␎ 030: ␞ 046: . 062: > 078: N 094: ^ 110: n 126: ~

015: ␏ 031: ␟ 047: / 063: ? 079: O 095: _ 111: o 127: ␡

0 – 31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more

Characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: ␀ 016: ␐ 032: ␠ 048: 0 064: @ 080: P 096: ‘ 112: p

001: ␁ 017: ␑ 033: ! 049: 1 065: A 081: Q 097: a 113: q

002: ␂ 018: ␒ 034: " 050: 2 066: B 082: R 098: b 114: r

003: ␃ 019: ␓ 035: # 051: 3 067: C 083: S 099: c 115: s

004: ␄ 020: ␔ 036: $ 052: 4 068: D 084: T 100: d 116: t

005: ␅ 021: ␕ 037: % 053: 5 069: E 085: U 101: e 117: u

006: ␆ 022: ␖ 038: & 054: 6 070: F 086: V 102: f 118: v

007: ␇ 023: ␗ 039: ’ 055: 7 071: G 087: W 103: g 119: w

008: ␈ 024: ␘ 040: (056: 8 072: H 088: X 104: h 120: x

009: ␉ 025: ␙ 041:) 057: 9 073: I 089: Y 105: i 121: y

010: ␊ 026: ␚ 042: * 058: : 074: J 090: Z 106: j 122: z

011: ␋ 027: ␛ 043: + 059: ; 075: K 091: [107: k 123: {

012: ␌ 028: ␜ 044: , 060: < 076: L 092: \ 108: l 124: |

013: ␍ 029: ␝ 045: - 061: = 077: M 093:] 109: m 125: }

014: ␎ 030: ␞ 046: . 062: > 078: N 094: ^ 110: n 126: ~

015: ␏ 031: ␟ 047: / 063: ? 079: O 095: _ 111: o 127: ␡

0 – 31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more

Characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: ␀ 016: ␐ 032: ␠ 048: 0 064: @ 080: P 096: ‘ 112: p

001: ␁ 017: ␑ 033: ! 049: 1 065: A 081: Q 097: a 113: q

002: ␂ 018: ␒ 034: " 050: 2 066: B 082: R 098: b 114: r

003: ␃ 019: ␓ 035: # 051: 3 067: C 083: S 099: c 115: s

004: ␄ 020: ␔ 036: $ 052: 4 068: D 084: T 100: d 116: t

005: ␅ 021: ␕ 037: % 053: 5 069: E 085: U 101: e 117: u

006: ␆ 022: ␖ 038: & 054: 6 070: F 086: V 102: f 118: v

007: ␇ 023: ␗ 039: ’ 055: 7 071: G 087: W 103: g 119: w

008: ␈ 024: ␘ 040: (056: 8 072: H 088: X 104: h 120: x

009: ␉ 025: ␙ 041:) 057: 9 073: I 089: Y 105: i 121: y

010: ␊ 026: ␚ 042: * 058: : 074: J 090: Z 106: j 122: z

011: ␋ 027: ␛ 043: + 059: ; 075: K 091: [107: k 123: {

012: ␌ 028: ␜ 044: , 060: < 076: L 092: \ 108: l 124: |

013: ␍ 029: ␝ 045: - 061: = 077: M 093:] 109: m 125: }

014: ␎ 030: ␞ 046: . 062: > 078: N 094: ^ 110: n 126: ~

015: ␏ 031: ␟ 047: / 063: ? 079: O 095: _ 111: o 127: ␡

0 – 31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more

Strings

A string is a sequence of characters

It is represented as a sequence of positive integers, with a “length field” at the start specifying the string’s length

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110

Strings

A string is a sequence of characters

It is represented as a sequence of positive integers, with a “length field” at the start specifying the string’s length

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110

Strings

A string is a sequence of characters

It is represented as a sequence of positive integers, with a “length field” at the start specifying the string’s length

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110

Strings

A string is a sequence of characters

It is represented as a sequence of positive integers, with a “length field” at the start specifying the string’s length

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound

	Outline
	Non-negative Integers
	Binary Arithmetic
	Negative Integers
	Real Numbers
	Characters
	Strings
	Structured Information

