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Non-negative Integers

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is ⌈logb(x + 1)⌉

The range of unsigned integers that can be represented using n base-b digits is [0, bn − 1]

An unsigned integer x can be expanded in any base b as the following polynomial

x = cn−1b
n−1 + cn−2b

n−2 + · · ·+ c1b
1 + c0b

0,

where the coefficients ci ∈ {0, 1, . . . , b − 1}

We say cn−1cn−2 . . . c1c0 is the base-b representation of x , and write it as cn−1cn−2 . . . c1c0b = x10
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Non-negative Integers

Example (representing 173 in the decimal system; b = 10 and ci ∈ {0, 1, . . . , 9})

The number of decimal digits needed to represent 173 is ⌈log10(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 decimal digits is [0, 103 − 1] = [0, 999]

173 = 1 · 102 + 7 · 101 + 3 · 100

Therefore, 17310 = 17310
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Non-negative Integers

Example (representing 173 in the binary system; b = 2 and ci ∈ {0, 1})

The number of binary digits (aka bits) needed to represent 173 is ⌈log2(173 + 1)⌉ = 8

The range of unsigned integers that can be represented using 8 bits is [0, 28 − 1] = [0, 255]

173 = 1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

Therefore, 101011012 = 17310
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Non-negative Integers

Example (representing 173 in the octal system; b = 8 and ci ∈ {0, 1, . . . , 7})

The number of octal digits needed to represent 173 is ⌈log8(173 + 1)⌉ = 3

The range of unsigned integers that can be represented using 3 octal digits is [0, 83 − 1] = [0, 511]

173 = 2 · 82 + 5 · 81 + 5 · 80

Therefore, 2558 = 17310
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Non-negative Integers

Example (representing 173 in the hexadecimal system; b = 16 and ci ∈ {0, 1, . . . , 9,A,B,C,D,E,F})

The number of hexadecimal digits needed to represent 173 is ⌈log16(173 + 1)⌉ = 2

The range of unsigned integers that can be represented using 2 hexadecimal digits is [0, 162 − 1] = [0, 255]

173 = A · 161 +D · 160

Therefore, AD16 = 17310
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Non-negative Integers

Dec Bin Oct Hex

0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F
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Binary Arithmetic

Example (addition in binary)

1 1 1 1

1 0 1 0 1 1 0 1 173

+ 0 0 1 1 0 1 0 0 52

1 1 1 0 0 0 0 1 225
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Negative Integers

Two’s complement method to compute −x

1. Represent x in binary

2. Flip the bits of the result

3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

2. Flip the bits of the result to obtain 10101100

3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (−83) = 0, we have 01010011 + 10101101 = 100000000
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Negative Integers

The range of signed integers that can be represented using n bits is [−2n−1, 2n−1 − 1]

Example (signed 4-bit integers)

Dec Bin

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111
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Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510
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Real Numbers

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- 1 01001 1010000000 = −29−15 × 1.1012 = −2−6(1 + 2−1 + 2−3) = −0.02539062510

- 0 10101 1001000100 = 221−15 × 1.100100012 = 26(1 + 2−1 + 2−4 + 2−8) = 100.2510
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Characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: ␀ 016: ␐ 032: ␠ 048: 0 064: @ 080: P 096: ‘ 112: p

001: ␁ 017: ␑ 033: ! 049: 1 065: A 081: Q 097: a 113: q

002: ␂ 018: ␒ 034: " 050: 2 066: B 082: R 098: b 114: r

003: ␃ 019: ␓ 035: # 051: 3 067: C 083: S 099: c 115: s

004: ␄ 020: ␔ 036: $ 052: 4 068: D 084: T 100: d 116: t

005: ␅ 021: ␕ 037: % 053: 5 069: E 085: U 101: e 117: u

006: ␆ 022: ␖ 038: & 054: 6 070: F 086: V 102: f 118: v

007: ␇ 023: ␗ 039: ’ 055: 7 071: G 087: W 103: g 119: w

008: ␈ 024: ␘ 040: ( 056: 8 072: H 088: X 104: h 120: x

009: ␉ 025: ␙ 041: ) 057: 9 073: I 089: Y 105: i 121: y

010: ␊ 026: ␚ 042: * 058: : 074: J 090: Z 106: j 122: z

011: ␋ 027: ␛ 043: + 059: ; 075: K 091: [ 107: k 123: {

012: ␌ 028: ␜ 044: , 060: < 076: L 092: \ 108: l 124: |

013: ␍ 029: ␝ 045: - 061: = 077: M 093: ] 109: m 125: }

014: ␎ 030: ␞ 046: . 062: > 078: N 094: ^ 110: n 126: ~

015: ␏ 031: ␟ 047: / 063: ? 079: O 095: _ 111: o 127: ␡

0 – 31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more
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Strings

A string is a sequence of characters

It is represented as a sequence of positive integers, with a “length field” at the start specifying the string’s length

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110
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Structured Information

Any structured information can be represented as a sequence of non-negative integers

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

- A sound as a temporal sequence of “sound pressure levels”

- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound
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