Introduction to Programming in Python

Building a Computer: Representing Information

Outline

1 Non-negative Integers

2 Binary Arithmetic

3 Negative Integers

4 Real Numbers

5 Characters

6 Strings

7 Structured Information

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is $\lceil \log_b(x+1) \rceil$

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is $\lceil \log_b(x+1) \rceil$

The range of unsigned integers that can be represented using *n* base-*b* digits is $[0, b^n - 1]$

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is $\lceil \log_b(x+1) \rceil$

The range of unsigned integers that can be represented using *n* base-*b* digits is $[0, b^n - 1]$

An unsigned integer x can be expanded in any base b as the following polynomial

$$x = c_{n-1}b^{n-1} + c_{n-2}b^{n-2} + \cdots + c_1b^1 + c_0b^0,$$

where the coefficients $c_i \in \{0, 1, \dots, b-1\}$

The number of digits needed to represent a non-negative (ie, unsigned) integer x in any base b is $\lceil \log_b(x+1) \rceil$

The range of unsigned integers that can be represented using *n* base-*b* digits is $[0, b^n - 1]$

An unsigned integer x can be expanded in any base b as the following polynomial

$$x = c_{n-1}b^{n-1} + c_{n-2}b^{n-2} + \cdots + c_1b^1 + c_0b^0,$$

where the coefficients $c_i \in \{0, 1, \dots, b-1\}$

We say $c_{n-1}c_{n-2}\ldots c_1c_0$ is the base-*b* representation of *x*, and write it as $c_{n-1}c_{n-2}\ldots c_1c_{0,b} = x_{10}$

Example (representing 173 in the decimal system; b = 10 and $c_i \in \{0, 1, \dots, 9\}$)

Example (representing 173 in the decimal system; b = 10 and $c_i \in \{0, 1, \dots, 9\}$)

The number of decimal digits needed to represent 173 is $\lceil \log_{10}(173 + 1) \rceil = 3$

Example (representing 173 in the decimal system; b = 10 and $c_i \in \{0, 1, \dots, 9\}$)

The number of decimal digits needed to represent 173 is $\lceil \log_{10}(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 decimal digits is $[0, 10^3 - 1] = [0, 999]$

Example (representing 173 in the decimal system; b = 10 and $c_i \in \{0, 1, \dots, 9\}$)

The number of decimal digits needed to represent 173 is $\lceil \log_{10}(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 decimal digits is $[0, 10^3 - 1] = [0, 999]$

 $173 = 1 \cdot 10^2 + 7 \cdot 10^1 + 3 \cdot 10^0$

Example (representing 173 in the decimal system; b = 10 and $c_i \in \{0, 1, \dots, 9\}$)

The number of decimal digits needed to represent 173 is $\lceil \log_{10}(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 decimal digits is $[0, 10^3 - 1] = [0, 999]$

 $173 = 1 \cdot 10^2 + 7 \cdot 10^1 + 3 \cdot 10^0$

Therefore, $173_{10} = 173_{10}$

Example (representing 173 in the binary system; b = 2 and $c_i \in \{0, 1\}$)

Example (representing 173 in the binary system; b = 2 and $c_i \in \{0, 1\}$)

The number of binary digits (aka bits) needed to represent 173 is $\lceil \log_2(173 + 1) \rceil = 8$

Example (representing 173 in the binary system; b = 2 and $c_i \in \{0, 1\}$)

The number of binary digits (aka bits) needed to represent 173 is $\lceil \log_2(173+1) \rceil = 8$

The range of unsigned integers that can be represented using 8 bits is $[0, 2^8 - 1] = [0, 255]$

Example (representing 173 in the binary system; b = 2 and $c_i \in \{0, 1\}$)

The number of binary digits (aka bits) needed to represent 173 is $\lceil \log_2(173 + 1) \rceil = 8$

The range of unsigned integers that can be represented using 8 bits is $[0, 2^8 - 1] = [0, 255]$

 $173 = 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

Example (representing 173 in the binary system; b = 2 and $c_i \in \{0, 1\}$)

The number of binary digits (aka bits) needed to represent 173 is $\lceil \log_2(173 + 1) \rceil = 8$

The range of unsigned integers that can be represented using 8 bits is $[0, 2^8 - 1] = [0, 255]$

 $173 = 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

Therefore, $10101101_2 = 173_{10}$

Example (representing 173 in the octal system; b = 8 and $c_i \in \{0, 1, \dots, 7\}$)

Example (representing 173 in the octal system; b = 8 and $c_i \in \{0, 1, \dots, 7\}$)

The number of octal digits needed to represent 173 is $\lceil \log_8(173+1)\rceil=3$

Example (representing 173 in the octal system; b = 8 and $c_i \in \{0, 1, \dots, 7\}$)

The number of octal digits needed to represent 173 is $\lceil \log_8(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 octal digits is $[0, 8^3 - 1] = [0, 511]$

Example (representing 173 in the octal system; b = 8 and $c_i \in \{0, 1, \dots, 7\}$)

The number of octal digits needed to represent 173 is $\lceil \log_8(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 octal digits is $[0, 8^3 - 1] = [0, 511]$

 $173 = 2 \cdot 8^2 + 5 \cdot 8^1 + 5 \cdot 8^0$

Example (representing 173 in the octal system; b = 8 and $c_i \in \{0, 1, \dots, 7\}$)

The number of octal digits needed to represent 173 is $\lceil \log_8(173+1) \rceil = 3$

The range of unsigned integers that can be represented using 3 octal digits is $[0, 8^3 - 1] = [0, 511]$

 $173 = 2 \cdot 8^2 + 5 \cdot 8^1 + 5 \cdot 8^0$

Therefore, $255_8 = 173_{10}$

Example (representing 173 in the hexadecimal system; b = 16 and $c_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$)

Example (representing 173 in the hexadecimal system; b = 16 and $c_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$)

The number of hexadecimal digits needed to represent 173 is $\lceil \log_{16}(173+1) \rceil = 2$

Example (representing 173 in the hexadecimal system; b = 16 and $c_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$)

The number of hexadecimal digits needed to represent 173 is $\lceil \log_{16}(173+1) \rceil = 2$

The range of unsigned integers that can be represented using 2 hexadecimal digits is $[0, 16^2 - 1] = [0, 255]$

Example (representing 173 in the hexadecimal system; b = 16 and $c_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$)

The number of hexadecimal digits needed to represent 173 is $\lceil \log_{16}(173+1) \rceil = 2$

The range of unsigned integers that can be represented using 2 hexadecimal digits is $[0, 16^2 - 1] = [0, 255]$

 $173=\mathsf{A}\cdot 16^1+\mathsf{D}\cdot 16^0$

Example (representing 173 in the hexadecimal system; b = 16 and $c_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$)

The number of hexadecimal digits needed to represent 173 is $\lceil \log_{16}(173+1) \rceil = 2$

The range of unsigned integers that can be represented using 2 hexadecimal digits is $[0, 16^2 - 1] = [0, 255]$

 $173 = \mathsf{A} \cdot 16^1 + \mathsf{D} \cdot 16^0$

Therefore, $AD_{16} = 173_{10}$

Dec	Bin	Oct	Hex	
0	0000	00	0	
1	0001	01	1	
2	0010	02	2	
3	0011	03	3	
4	0100	04	4	
5	0101	05	5	
6	0110	06	6	
7	0111	07	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	А	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

Binary Arithmetic

Binary Arithmetic

Example (addition in binary)

Two's complement method to compute -x

Two's complement method to compute -x

1. Represent x in binary

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Example (-83 on an 8-bit computer)

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Example (-83 on an 8-bit computer)

1. Represent 83 in binary as 01010011

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Example (-83 on an 8-bit computer)

- 1. Represent 83 in binary as 01010011
- 2. Flip the bits of the result to obtain 10101100

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Example (-83 on an 8-bit computer)

- 1. Represent 83 in binary as 01010011
- 2. Flip the bits of the result to obtain 10101100
- 3. Add 1 to the result to obtain 10101101

Two's complement method to compute -x

- 1. Represent x in binary
- 2. Flip the bits of the result
- 3. Add 1 to the result

Example (-83 on an 8-bit computer)

- 1. Represent 83 in binary as 01010011
- 2. Flip the bits of the result to obtain 10101100
- 3. Add 1 to the result to obtain 10101101

Note: just like how 83 + (-83) = 0, we have 01010011 + 10101101 = 100000000

The range of signed integers that can be represented using n bits is $[-2^{n-1}, 2^{n-1} - 1]$

The range of signed integers that can be represented using *n* bits is $[-2^{n-1}, 2^{n-1} - 1]$

Example (signed 4-bit integers)

Dec	Bin			
-8	1000			
-7	1001			
-6	1010			
-5	1011			
-4	1100			
-3	1101			
-2	1110			
-1	1111			
0	0000			
1	0001			
2	0010			
3	0011			
4	0100			
5	0101			
6	0110			
7	0111			

sign (1 bit) | offset-binary exponent (5 bits) | binary fraction (10 bits)

IEEE 754 Half-precision Format

sign (1 bit) | offset-binary exponent (5 bits) | binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

 $- \ \underline{1} \ \underline{01001} \ \underline{1010000000} = -2^{9-15} \times 1.101_2 = -2^{-6}(1+2^{-1}+2^{-3}) = -0.025390625_{10}$

sign (1 bit) offset-binary exponent (5 bits) binary fraction (10 bits)

IEEE 754 Half-precision Format

Example

- $\ \underline{1} \ \underline{01001} \ \underline{1010000000} = -2^{9-15} \times 1.101_2 = -2^{-6}(1+2^{-1}+2^{-3}) = -0.025390625_{10}$
- $\ \underline{0} \ \underline{10101} \ \underline{1001000100} = 2^{21-15} \times 1.10010001_2 = 2^6(1+2^{-1}+2^{-4}+2^{-8}) = 100.25_{10}$

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: 🚿	016: ►	032: 🗆	048: 0	064: @	080: P	٥96: ١	112: p
001: ©	017: 🖪	033: !	049: 1	065: A	081: Q	097: a	113: q
002: •	018: ‡	034: "	050: 2	066: B	082: R	098: b	114: r
003: 💙	019: ‼	035: #	051: 3	067: C	083: S	099: c	115: s
004: ♦	020: ¶	036: \$	052: 4	068: D	084: T	100: d	116: t
005: 🔶	021: §	037: %	053: 5	069: E	085: U	101: e	117: u
006: 👲	022: -	038: &	054: 6	070: F	086: V	102: f	118: v
007: •	023: ‡	039: ′	055: 7	071: G	087: W	103: g	119: w
008: 🗖	024: †	040: (056: 8	072: H	088: X	104: h	120: ×
009: 0	025: ↓	041:)	057: 9	073: I	089: Y	105: i	121: y
010: 📾	026: →	042: *	058: :	074: J	090: Z	106: j	122: z
011: ď	027: ←	043: +	059: ;	075: K	091: [107: k	123: {
012: ¥	028: L	044: ,	060: <	076: L	092: \	108: I	124:
013: >	029: ++	045: -	061: =	077: M	093:]	109: m	125: }
014: #	030: 🔺	046: .	062: >	078: N	094: ^	110: n	126: ~
015: *	031: 🔻	047: /	063: ?	079: O	095: _	111: o	127: 🗅

0-31 and 127 are control characters and the rest are printable characters

American Standard Code for Information Interchange (ASCII) defines 8-bit character encodings

The first 128 ASCII codes

000: \	016: ►	032: 🗆	048: 0	064: @	080: P	096: \	112: p
001: ©	017: 🖪	033: !	049: 1	065: A	081: Q	097: a	113: q
002: •	018: ‡	034: "	050: 2	066: B	082: R	098: b	114: r
003: 💙	019: ‼	035: #	051: 3	067: C	083: S	099: c	115: s
004: ♦	020: ¶	036: \$	052: 4	068: D	084: T	100: d	116: t
005: 🔶	021: §	037: %	053: 5	069: E	085: U	101: e	117: u
006: 👲	022: -	038: &	054: 6	070: F	086: V	102: f	118: v
007: •	023: ‡	039: ′	055: 7	071: G	087: W	103: g	119: w
008: 🗖	024: †	040: (056: 8	072: H	088: X	104: h	120: ×
009: 0	025: ↓	041:)	057: 9	073: I	089: Y	105: i	121: y
010: 📾	026: →	042: *	058: :	074: J	090: Z	106: j	122: z
011: ď	027: ←	043: +	059: ;	075: K	091: [107: k	123: {
012: ¥	028: L	044: ,	060: <	076: L	092: \	108: I	124:
013: >	029: ++	045: -	061: =	077: M	093:]	109: m	125: }
014: #	030: 🔺	046: .	062: >	078: N	094: ^	110: n	126: ~
015: *	031: 🔻	047: /	063: ?	079: O	095: _	111: o	127: A
015: \$		047: /	005: 1	079: 0	095: _	111: 0	

0-31 and 127 are control characters and the rest are printable characters

The 16-bit Unicode system can represent every character in every known language, with room for more

A string is a sequence of characters

A string is a sequence of characters

It is represented as a sequence of positive integers, with a "length field" at the start specifying the string's length

A string is a sequence of characters

It is represented as a sequence of positive integers, with a "length field" at the start specifying the string's length

Example: the string "Python" is represented in decimal as the sequence

006 080 121 116 104 111 110

and in binary as the sequence

<u>00000110</u> <u>01010000</u> <u>01111001</u> <u>01110100</u> <u>01101000</u> <u>01101111</u> <u>01101100</u>

Structured Information

Example (representing pictures, sounds, and movies)

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel
- A sound as a temporal sequence of "sound pressure levels"

Example (representing pictures, sounds, and movies)

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel
- A sound as a temporal sequence of "sound pressure levels"
- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound