
Assignment 4 (RSA Crpytosystem)

Goal: The goal of this assignment is to implement the RSA public-key cryptosystem.

Part I: Warmup Problems

The problems in this part of the assignment are intended to give you solid practice on concepts (using and defining functions)
needed to solve the problems in Part II.

Problem 1. (Reverse) Implement the function _reverse() in reverse.py that reverses the one-dimensional list a in place, ie,
without creating a new list.

& ~/workspace/rsa cryptosystem

$ python3 reverse.py
b o l t o n
<ctrl -d>
n o t l o b
$ python3 reverse.py
m a d a m
<ctrl -d>
m a d a m

Problem 2. (Euclidean Distance) Implement the function _distance() in distance.py that returns the Euclidean distance between
the vectors x and y represented as one-dimensional lists of floats. The Euclidean distance is calculated as the square root of
the sums of the squares of the differences between the corresponding entries. You may assume that x and y have the same
length.

& ~/workspace/rsa cryptosystem

$ python3 distance.py 2
1 0 <enter >
0 1 <enter >
1.4142135623730951
$ python3 distance.py 5
-9 1 10 -1 1 <enter >
-5 9 6 7 4 <enter >
13.0

Problem 3. (Transpose) Implement the function _transpose() in transpose.py that creates and returns a new matrix that is the
transpose of the matrix represented by the argument a. Note that a need not have the same number rows and columns.
Recall that the transpose of an m-by-n matrix A is an n-by-m matrix B such that Bij = Aji, where 0 ≤ i < n and 0 ≤ j < m.

& ~/workspace/rsa cryptosystem

$ python3 transpose.py 2 2
1 2 <enter >
3 4 <enter >
1.0 3.0
2.0 4.0
$ python3 transpose.py 2 3
1 2 3 <enter >
4 5 6 <enter >
1.0 4.0
2.0 5.0
3.0 6.0

Problem 4. (Palindrome) Implement the function _isPalindrome() in palindrome.py that returns True if the argument s is a
palindrome (ie, reads the same forwards and backwards), and False otherwise. You may assume that s is all lower case and
doesn’t contain any whitespace characters.

& ~/workspace/rsa cryptosystem

$ python3 palindrome.py bolton
False
$ python3 palindrome.py amanaplanacanalpanama
True

1 / 4



Assignment 4 (RSA Crpytosystem)

Problem 5. (Sine Function) Implement the function _sin() in sin.py that calculates the sine of the argument x (in radians),
using the formula

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

& ~/workspace/rsa cryptosystem

$ python3 sin.py 60
0.8660254037844385

Part II: RSA Cryptosystem

Background: RSA (Rivest-Shamir-Adleman) cryptosystem is widely used for secure communication in browsers, bank ATM
machines, credit card machines, mobile phones, smart cards, and operating systems. It works by manipulating integers. To
thwart eavesdroppers, the RSA cryptosystem must manipulate huge integers (hundreds of digits), which is naturally supported
by the int data type in Python. Your task is to implement a library that supports core functions needed for developing the
RSA cryptosystem, and implement programs for encrypting and decrypting messages using RSA.

The Math Behind: The RSA cryptosystem involves three integers n, e, and d that satisfy certain mathematical properties.
The public key (n, e) is made public on the Internet, while the private key (n, d) is only known to Bob. If Alice wants to send
Bob a message x ∈ [0, n), she encrypts it using the function

E(x) = xe mod n,

where n = pq for two distinct large prime numbers p and q chosen at random, and e is a random prime number less than
m = (p− 1)(q − 1) such that e does not divide m.

For example, suppose p = 47 and q = 79. Then n = 3713 and m = 3588. Further suppose e = 7. If Alice wants to send the
message x = 2020 to Bob, she encrypts it as

E(2020) = 20207 mod 3713 = 516.

When Bob receives the encrypted message y, he decrypts it using the function

D(y) = yd mod n,

where d ∈ [1,m) is the multiplicative inverse of e mod m, ie, d is an integer that satisfies the equation ed mod m = 1.

Continuing the example above, if d = 2563, then when Bob receives the encrypted message y = 516 from Alice, he decrypts
it to recover the original message as

D(516) = 5162563 mod 3713 = 2020.

Problem 6. (RSA Library) Implement a library called rsa.py that provides functions needed for developing the RSA cryp-
tosystem. The library must support the following API:

² rsa

keygen(lo, hi) generates and returns the public/private keys as a tuple (n, e, d), picking prime numbers p and q needed
to generate the keys from the interval [lo, hi)

encrypt(x, n, e) encrypts x (int) using the public key (n, e) and returns the encrypted value
decrypt(y, n, d) decrypts y (int) using the private key (n, d) and returns the decrypted value
bitLength(n) returns the least number of bits needed to represent n

dec2bin(n, width) returns the binary representation of n expressed in decimal, having the given width and padded with
leading zeros

bin2dec(n) returns the decimal representation of n expressed in binary

2 / 4



Assignment 4 (RSA Crpytosystem)

& ~/workspace/rsa cryptosystem

$ python3 rsa.py S
encrypt(S) = 1743
decrypt (1743) = S
bitLength (83) = 7
dec2bin (83) = 1010011
bin2dec (1010011) = 83

Problem 7. (Keygen Program) Write a program called keygen.py that accepts lo (int) and hi (int) as command-line arguments,
generates public/private keys (n, e, d), and writes the keys to standard output, separated by a space. The interval [lo, hi)
specifies the interval from which prime numbers p and q needed to generate the keys are picked.

& ~/workspace/rsa cryptosystem

$ python3 keygen.py 50 100
3599 1759 2839

Problem 8. (Encryption Program) Write a program called encrypt.py that accepts the public-key n (int) and e (int) as
command-line arguments and a message to encrypt from standard input, encrypts each character in the message, and writes
its fixed-width binary representation to standard output.

& ~/workspace/rsa cryptosystem

$ python3 encrypt.py 3599 1759
CS110
<ctrl -d>
000110000000010011010100001010100011001010100011001110000110010111100100

Problem 9. (Decryption Program) Write a program called decrypt.py that accepts the private-key n (int) and d (int) as
command-line arguments and a message to decrypt (produced by encrypt.py) from standard input, decrypts each character
(represented as a fixed-width binary sequence) in the message, and writes the decrypted character to standard output.

& ~/workspace/rsa cryptosystem

$ python3 decrypt.py 3599 2839
000110000000010011010100001010100011001010100011001110000110010111100100
<ctrl -d>
CS110
$ python3 encrypt.py 3599 1759 | python3 decrypt.py 3599 2839
Python is the mother of all languages.
<ctrl -d>
Python is the mother of all languages.

Data: Be sure to test your programs thoroughly using files provided under the data folder. For example:

& ~/workspace/rsa cryptosystem

$ python3 keygen.py 50 100
5963 4447 367
$ python3 encrypt.py 5963 4447 < data/adams.txt | python3 decrypt.py 5963 367
The major difference between a thing that might go wrong and a thing that cannot possibly go wrong
is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible
to get at and repair.

Files to Submit:

1. reverse.py

2. distance.py

3 / 4



Assignment 4 (RSA Crpytosystem)

3. transpose.py

4. palindrome.py

5. sin.py

6. rsa.py

7. keygen.py

8. encrypt.py

9. decrypt.py

10. notes.txt

Before you submit your files, make sure:

� You do not use concepts from sections beyond Libraries and Applications.

� Your code is adequately commented, follows good programming principles, and meets any problem-specific require-
ments.

� You edit the sections (#1 mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
Section #1 must provide a clear high-level description of each problem in no more than 100 words.

Acknowledgement: Part II of this assignment is an adaptation of the RSA Public-key Cryptosystem assignment developed
at Princeton University by Robert Sedgewick and Kevin Wayne.

4 / 4


