
Introduction to Programming in Python
Assignment 4 (RSA Cryptosystem) Discussion



Part I (Warmup Problems) · Problem 1 (Reverse)

Implement the function _reverse() in reverse.py that reverses the 1D list a in place, ie, without creating a new list

& ~/workspace/rsa cryptosystem

$ python3 reverse.py

b o l t o n

<ctrl -d>

n o t l o b

$ python3 reverse.py

m a d a m

<ctrl -d>

m a d a m



Part I (Warmup Problems) · Problem 1 (Reverse)

Set n to the number of elements in a

For each i in [0, n/2]

- Exchange a[i ] with a[n − i − 1] (use a temporary variable)



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

Implement the function _distance() in distance.py that returns the Euclidean distance between the vectors x and y
represented as 1D lists of floats

& ~/workspace/rsa cryptosystem

$ python3 distance.py 2

1 0 <enter >

0 1 <enter >

1.4142135623730951

$ python3 distance.py 5

-9 1 10 -1 1 <enter >

-5 9 6 7 4 <enter >

13.0



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

Set n to the number of elements in x

Set d to 0.0

For each i in [0, n)

- Increment d by (x[i ]− y [i ])2

Return
√
d



Part I (Warmup Problems) · Problem 3 (Transpose)

Implement the function _transpose() in transpose.py that creates and returns a new matrix that is the transpose of the matrix
represented by the argument a

& ~/workspace/rsa cryptosystem

$ python3 transpose.py 2 2

1 2 <enter >

3 4 <enter >

1.0 3.0

2.0 4.0

$ python3 transpose.py 2 3

1 2 3 <enter >

4 5 6 <enter >

1.0 4.0

2.0 5.0

3.0 6.0



Part I (Warmup Problems) · Problem 3 (Transpose)

Set m to the number of rows in a and n to the number of columns in a

Set c to a 2D list of dimensions n ×m

For each i in [0, n)

- For each j in [0,m)

- Set c[i ][j] to a[j][i ]

Return c



Part I (Warmup Problems) · Problem 4 (Palindrome)

Implement the function _isPalindrome() in palindrome.py that returns True if the argument s is a palindrome (ie, reads the same
forwards and backwards), and False otherwise

& ~/workspace/rsa cryptosystem

$ python3 palindrome.py bolton

False

$ python3 palindrome.py amanaplanacanalpanama

True



Part I (Warmup Problems) · Problem 4 (Palindrome)

Set n to the number of characters in s

For each i in [0, n/2]

- Return False of s[i ] is different from s[n − i − 1]

Return True



Part I (Warmup Problems) · Problem 5 (Sine Function)

Implement the function _sin() in sin.py that calculates the sine of the argument x (in radians), using the formula

sin(x) = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

& ~/workspace/rsa cryptosystem

$ python3 sin.py 60

0.8660254037844385



Part I (Warmup Problems) · Problem 5 (Sine Function)

Set total to 0.0, term to 1.0, sign to 1, and i to 1

As long as total is different from total + term

- Set term to term × x/i to term

- If i is odd, increment total by sign ∗ term and toggle sign (ie, set it -1 if it’s positive and +1 if it’s negative)

- Increment i by 1

Return total



Part II (RSA Cryptosystem) · Introduction

The RSA cryptosystem involves three integers n, e, and d that satisfy certain mathematical properties

The public key (n, e) is made public on the Internet, while the private key (n, d) is only known to Bob

If Alice wants to send Bob a message x ∈ [0, n), she encrypts it using the function E(x) = xe mod n, where n = pq for
two distinct large prime numbers p and q chosen at random, and e is a random prime number less than
m = (p − 1)(q − 1) such that e does not divide m

Example: suppose p = 47 and q = 79; then n = 3713 and m = 3588; further suppose e = 7; if Alice wants to send the
message x = 2020 to Bob, she encrypts it as E(2020) = 20207 mod 3713 = 516

When Bob receives the encrypted message y , he decrypts it using the function D(y) = yd mod n, where d ∈ [1,m) is
an integer that satisfies the equation ed mod m = 1

Continuing the example above, if d = 2563, then when Bob receives the encrypted message y = 516 from Alice, he
decrypts it to recover the original message as D(516) = 5162563 mod 3713 = 2020



Part II (RSA Cryptosystem) · Problem 6 (RSA Library)

Implement a library called rsa.py that provides functions needed for developing the RSA cryptosystem and supports the
following API

² rsa

keygen(lo, hi) generates and returns the public/private keys as a tuple (n, e, d), picking prime numbers p and q
needed to generate the keys from the interval [lo, hi)

encrypt(x, n, e) encrypts x (int) using the public key (n, e) and returns the encrypted value

decrypt(y, n, d) decrypts y (int) using the private key (n, d) and returns the decrypted value

bitLength(n) returns the least number of bits needed to represent n

dec2bin(n, width) returns the binary representation of n expressed in decimal, having the given width and padded with
leading zeros

bin2dec(n) returns the decimal representation of n expressed in binary

& ~/workspace/rsa cryptosystem

$ python3 rsa.py S

encrypt(S) = 1743

decrypt (1743) = S

bitLength (83) = 7

dec2bin (83) = 1010011

bin2dec (1010011) = 83



Part II (RSA Cryptosystem) · Problem 6 (RSA Library)

keygen(lo, hi)

- Get a list of primes from the interval [lo, hi)

- Sample two distinct random primes p and q from that list

- Set n and m to pq and (p − 1)(q − 1), respectively

- Get a list primes from the interval [2,m)

- Choose a random prime e from the list such that e does not divide m (you will need a loop for this)

- Find a d ∈ [1,m) such that ed mod m = 1 (you will need a loop for this)

- Return the tuple1 (n, e, d)

encrypt(x, n, e)

- Implement the function E(x) = xe mod n

decrypt(y, n, d)

- Implement the function D(y) = yd mod n

1A tuple is like a list, but is immutable. You create a tuple by enclosing comma-separated values within matched parentheses, eg, a = (1, 2, 3). If a is a
tuple, a[i] is the ith element in it



Part II (RSA Cryptosystem) · Problem 6 (RSA Library)

_primes(lo, hi)

- Create an empty list

- For each p ∈ [lo, hi), if p is a prime, add p to the list

- Return the list

_sample(a, k)

- Create a list b that is a copy (not an alias) of a

- Shuffle the first k elements of b

- Return a list containing the first k elements of b

_choice(a)

- Get a random number r ∈ [0, l), where l is the number of elements in a

- Return the element in a at the index r



Part II (RSA Cryptosystem) · Problem 7 (Keygen Program)

Write a program called keygen.py that accepts lo (int) and hi (int) as command-line arguments, generates public/private
keys (n, e, d), and writes the keys to standard output, separated by a space

& ~/workspace/rsa cryptosystem

$ python3 keygen.py 50 100

3599 1759 2839



Part II (RSA Cryptosystem) · Problem 7 (Keygen Program)

Accept lo (int) and hi (int) as command-line arguments

Get public/private keys as a tuple

Write the three values in the tuple, separated by a space



Part II (RSA Cryptosystem) · Problem 8 (Encryption Program)

Write a program called encrypt.py that accepts the public-key n (int) and e (int) as command-line arguments and a
message to encrypt from standard input, encrypts each character in the message, and writes its fixed-width binary
representation to standard output

& ~/workspace/rsa cryptosystem

$ python3 encrypt.py 3599 1759

CS110

<ctrl -d>

000110000000010011010100001010100011001010100011001110000110010111100100



Part II (RSA Cryptosystem) · Problem 8 (Encryption Program)

Accept public-key n (int) and e (int) as command-line arguments

Get the number of bits per character (call it width) needed for encryption, ie, number of bits needed to encode n

Accept message to encrypt from standard input

For each character c in message

- Use the built-in function ord() to turn c into an integer x

- Encrypt x

- Write the encrypted value as a width-long binary string

Write a newline character



Part II (RSA Cryptosystem) · Problem 9 (Decrpytion Program)

Write a program called decrypt.py that accepts the private-key n (int) and d (int) as command-line arguments and a
message to decrypt (produced by encrypt.py) from standard input, decrypts each character (represented as a fixed-width
binary sequence) in the message, and writes the decrypted character to standard output

& ~/workspace/rsa cryptosystem

$ python3 decrypt.py 3599 2839

000110000000010011010100001010100011001010100011001110000110010111100100

<ctrl -d>

CS110

$ python3 encrypt.py 3599 1759 | python3 decrypt.py 3599 2839

Python is the mother of all languages.

<ctrl -d>

Python is the mother of all languages.



Part II (RSA Cryptosystem) · Problem 9 (Decrpytion Program)

Accept private-key n (int) and d (int) as command-line arguments

Get the number of bits per character (call it width)

Accept message (binary string generated by encrypt.py) from standard input

Assuming l is the length of message, for i ∈ [0, l − 1) and in increments of width

- Set s to substring of message from i to i + width (exclusive)

- Set y to decimal representation of the binary string s

- Decrypt y

- Write the character corresponding to the decrypted value, obtained using the built-in function chr()


	Part I (Warmup Problems)
	Problem 1 (Reverse)
	Problem 2 (Euclidean Distance)
	Problem 3 (Transpose)
	Problem 4 (Palindrome)
	Problem 5 (Sine Function)

	Part II (RSA Cryptosystem)
	Introduction
	Problem 6 (RSA Library)
	Problem 7 (Keygen Program)
	Problem 8 (Encryption Program)
	Problem 9 (Decrpytion Program)


