
Assignment 1 (Straight-line Programs)

Goal: Implement simple programs without using control-flow (ie, branch and loop) statements.

Problem 1. (Name and Age) Write a program called name_age.py that accepts name (str) and age (str) as command-line
arguments, and writes the string “name is age years old.” to standard output.

& ~/workspace/straightline programs

$ python3 name_age.py Alice 19
Alice is 19 years old.
$ python3 name_age.py Bob 23
Bob is 23 years old.

Problem 2. (Greet Three) Write a program called greet_three.py that accepts name1 (str), name2 (str), and name3 (str) as
command-line arguments, and writes the string “Hi name3, name2, and name1.” to standard output.

& ~/workspace/straightline programs

$ python3 greet_three.py Alice Bob Carol
Hi Carol , Bob , and Alice.
$ python3 greet_three.py Dan Eve Fred
Hi Fred , Eve , and Dan.

Problem 3. (Day of the Week) Write a program called day_of_week.py that accepts m (int), d (int), and y (int) as command-
line arguments, representing a date, and writes the day of the week (0 for Sunday, 1 for Monday, and so on) dow to standard
output, computed as

y0 = y − (14−m)/12,

x0 = y0 + y0/4− y0/100 + y0/400,

m0 = m+ 12× ((14−m)/12)− 2,

dow = (d+ x0 + 31×m0/12) mod 7.

& ~/workspace/straightline programs

$ python3 day_of_week.py 3 14 1879
5
$ python3 day_of_week.py 2 12 1809
0

Problem 4. (Three Sort) Write a program called three_sort.py that accepts x (int), y (int), and z (int) as command-line
arguments, and writes them to standard output in ascending order, separated by spaces. Your solution must only use min(),
max(), and basic arithmetic operations to figure out the ordering.

& ~/workspace/straightline programs

$ python3 three_sort.py 1 3 2
1 2 3
$ python3 three_sort.py 3 2 1
1 2 3

Problem 5. (Body Mass Index) The body mass index (BMI) is the ratio of the weight w of a person (in kg) to the square
of the height h (in m). Write a program called bmi.py that accepts w (float) and h (float) as command-line arguments, and
writes the BMI value to standard output.

& ~/workspace/straightline programs

$ python3 bmi.py 75 1.83
22.395413419331717
$ python3 bmi.py 97 1.75

1 / 4

Assignment 1 (Straight-line Programs)

31.6734693877551

Problem 6. (Wind Chill) Given the temperature t (in Fahrenheit) and the wind speed v (in miles per hour), the National
Weather Service defines the effective temperature (the wind chill) to be

w = 35.74 + 0.6215t+ (0.4275t− 35.75)v0.16.

Write a program called wind_chill.py that accepts t (float) and v (float) as command-line arguments, and writes the wind chill
w to standard output.

& ~/workspace/straightline programs

$ python3 wind_chill.py 32 15
21.588988890532022
$ python3 wind_chill.py 10 10
-3.5402167842280647

Problem 7. (Gravitational Force) Write a program called gravitational_force.py that accepts m1 (float), m2 (float), and r
(float) as command-line arguments, representing the masses (in kg) of two objects and the distance (in m) between their
centers, and writes to standard output the gravitational force f (in N) acting between the objects, computed as

f = G
m1m2

r2
,

where G = 6.674× 10−11 (in m3 kg−1 s−2) is the gravitational constant.

& ~/workspace/straightline programs

$ python3 gravitational_force.py 2e30 6e24 1.5 e11
3.5594666666666664e+22
$ python3 gravitational_force.py 6e24 7.35 e22 3.84e8
1.9960083007812498e+20

Problem 8. (Gambler’s Ruin) Consider a coin-flipping game with two players where player one wins each toss with prob-
ability p, and player two wins with probability q = 1 − p. Suppose player one has n1 pennies and player two n2 pennies.
Assuming an unfair coin (ie, p ̸= 1/2), the probabilities p1 and p2 that players one and two, respectively, will end penniless
are

p1 =
1− (pq)

n2

1− (pq)
n1+n2

and p2 =
1− (qp)

n1

1− (qp)
n1+n2

.

Write a program called gambler.py that accepts n1 (int), n2 (int), and p (float) as command-line arguments, and writes the
probabilities p1 and p2 to standard output, separated by a space.

& ~/workspace/straightline programs

$ python3 gambler.py 10 100 0.51
0.6661883734200654 0.3338116265799349
$ python3 gambler.py 100 10 0.51
0.006110712510580903 0.9938892874894192

Problem 9. (Waiting Time) If λ is the average number of events per unit of time, the probability p that one has to wait
longer than time t until the next event is given by the exponential distribution

p = e−λt.

Write a program called waiting_time.py that accepts λ (float) and t (float) as command-line arguments, and writes the probability
p to standard output.

2 / 4

Assignment 1 (Straight-line Programs)

& ~/workspace/straightline programs

$ python3 waiting_time.py 0.1 5
0.6065306597126334
$ python3 waiting_time.py 0.6 3
0.16529888822158656

Problem 10. (Cartesian Coordinates) Write a program called cartesian.py that accepts r (float) and θ (float) representing
the coordinates of a point in polar form, converts the coordinates into Cartesian form x and y using formulae x = r cos(θ)
and y = r sin(θ), and writes those values to standard output, separated by a space.

& ~/workspace/straightline programs

$ python3 cartesian.py 1 45
0.7071067811865476 0.7071067811865475
$ python3 cartesian.py 1 60
0.5000000000000001 0.8660254037844386

Problem 11. (Great Circle Distance) Write a program called great_circle.py that accepts x1 (float), y1 (float), x2 (float), and
y2 (float) as command-line arguments, representing the latitude and longitude in degrees of two points on Earth, and writes
to standard output the great circle distance d (in km) between them, computed as

d = 6359.83 arccos(sin(x1) sin(x2) + cos(x1) cos(x2) cos(y1 − y2)).

& ~/workspace/straightline programs

$ python3 great_circle.py 48.87 -2.33 37.8 -122.4
8701.387455462233
$ python3 great_circle.py 46.36 -71.06 39.90 116.41
10376.503884802196

Problem 12. (Snell’s Law) Snell’s law states that given two mediums, the ratio of the sines of the angles (in degrees) of
incidence and refraction is equivalent to the reciprocal of the ratio of the indices of refraction of the two mediums, ie,

sin(θ1)

sin(θ2)
=

n2

n1
.

Write a program called snell.py that accepts θ1 (float), n1 (float), and n2 (float) as command-line arguments, and writes to
standard output the corresponding angle of refraction θ2 in degrees.

& ~/workspace/straightline programs

$ python3 snell.py 58 1 1.52
33.912513998258994
$ python3 snell.py 30 1 1.2
24.624318352164074

Problem 13. (Uniform Random Numbers) Write a program called stats.py that accepts a (int) and b (int) as command-
line arguments, generates three random floats (x1, x2, and x3), each from the interval [a, b), computes their mean µ =
(x1 + x2 + x3)/3, variance var = ((x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2)/3, and standard deviation σ =

√
var, and writes those

values to standard output, separated by a space.

& ~/workspace/straightline programs

$ python3 stats.py 0 1
0.5731084550427492 0.04897843881307027 0.22131072909615176
$ python3 stats.py 50 100
91.3736830296877 25.288830238538182 5.028800079396494

Problem 14. (Die Roll) Write a program called die_roll.py that accepts n (int) as command-line argument, representing the
number of sides of a fair die, rolls an n-sided die twice, and writes to standard output the sum of the numbers rolled.

3 / 4

Assignment 1 (Straight-line Programs)

& ~/workspace/straightline programs

$ python3 die_roll.py 6
12
$ python3 die_roll.py 6
10

Problem 15. (Triangle Inequality) Write a program called triangle.py that accepts x (int), y (int), and z (int) as command-
line arguments, and writes True to standard output if each one of them is less than or equal to the sum of the other two, and
False otherwise.

& ~/workspace/straightline programs

$ python3 triangle.py 3 3 3
True
$ python3 triangle.py 2 4 7
False

Files to Submit:

1. name_age.py

2. greet_three.py

3. day_of_week.py

4. three_sort.py

5. bmi.py

6. wind_chill.py

7. gravitational_force.py

8. gambler.py

9. waiting_time.py

10. cartesian.py

11. great_circle.py

12. snell.py

13. stats.py

14. die_roll.py

15. triangle.py

16. notes.txt

Before you submit your files, make sure:

� You do not use concepts from sections beyond Basic Data Types.

� Your code is adequately commented, follows good programming principles, and meets any problem-specific require-
ments.

� You edit the sections (#1 mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
Section #1 must provide a clear high-level description of each problem in no more than 100 words.

4 / 4

