
Data Structures and Algorithms in Java
Procedural Programming: Basic Data Types

Outline

1 Data Types

2 Expressions

3 Statements

4 Strings

5 Integers

6 Doubles

7 Booleans

8 Operator Precedence

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Java supports basic and reference data types

Eight basic data types

1. boolean for true and false values with logical operations

2. byte for 8-bit integers with arithmetic operations

3. char for 16-bit characters with arithmetic operations

4. short for 16-bit integers with arithmetic operations

5. int for 32-bit integers with arithmetic operations

6. float for 32-bit single-precision real numbers with arithmetic operations

7. long for 64-bit integers with arithmetic operations

8. double for 64-bit double-precision real numbers with arithmetic operations

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Java supports basic and reference data types

Eight basic data types

1. boolean for true and false values with logical operations

2. byte for 8-bit integers with arithmetic operations

3. char for 16-bit characters with arithmetic operations

4. short for 16-bit integers with arithmetic operations

5. int for 32-bit integers with arithmetic operations

6. float for 32-bit single-precision real numbers with arithmetic operations

7. long for 64-bit integers with arithmetic operations

8. double for 64-bit double-precision real numbers with arithmetic operations

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Java supports basic and reference data types

Eight basic data types

1. boolean for true and false values with logical operations

2. byte for 8-bit integers with arithmetic operations

3. char for 16-bit characters with arithmetic operations

4. short for 16-bit integers with arithmetic operations

5. int for 32-bit integers with arithmetic operations

6. float for 32-bit single-precision real numbers with arithmetic operations

7. long for 64-bit integers with arithmetic operations

8. double for 64-bit double-precision real numbers with arithmetic operations

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Java supports basic and reference data types

Eight basic data types

1. boolean for true and false values with logical operations

2. byte for 8-bit integers with arithmetic operations

3. char for 16-bit characters with arithmetic operations

4. short for 16-bit integers with arithmetic operations

5. int for 32-bit integers with arithmetic operations

6. float for 32-bit single-precision real numbers with arithmetic operations

7. long for 64-bit integers with arithmetic operations

8. double for 64-bit double-precision real numbers with arithmetic operations

Expressions · Literals

A literal represents a basic data-type value

Example

- true and false are boolean literals

- ’*’ is a char literal

- 42 is an int literal

- 1729L is a long literal

- 3.14159D is a double literal

Expressions · Literals

A literal represents a basic data-type value

Example

- true and false are boolean literals

- ’*’ is a char literal

- 42 is an int literal

- 1729L is a long literal

- 3.14159D is a double literal

Expressions · Literals

A literal represents a basic data-type value

Example

- true and false are boolean literals

- ’*’ is a char literal

- 42 is an int literal

- 1729L is a long literal

- 3.14159D is a double literal

Expressions · Identifiers

An identifier represents a name

Each identifier is a sequence of letters, digits, underscore symbols, and dollar symbols, not starting with a digit

Example: abc, abc_, aBC123, and $abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Expressions · Identifiers

An identifier represents a name

Each identifier is a sequence of letters, digits, underscore symbols, and dollar symbols, not starting with a digit

Example: abc, abc_, aBC123, and $abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Expressions · Identifiers

An identifier represents a name

Each identifier is a sequence of letters, digits, underscore symbols, and dollar symbols, not starting with a digit

Example: abc, abc_, aBC123, and $abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Expressions · Identifiers

An identifier represents a name

Each identifier is a sequence of letters, digits, underscore symbols, and dollar symbols, not starting with a digit

Example: abc, abc_, aBC123, and $abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Variables

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, and Math.PI

Expressions · Operators

An operator represents a data-type operation

Example

- +, -, *, /, and % represent arithmetic operations

- !, ||, and && represent logical operations

Expressions · Operators

An operator represents a data-type operation

Example

- +, -, *, /, and % represent arithmetic operations

- !, ||, and && represent logical operations

Expressions · Operators

An operator represents a data-type operation

Example

- +, -, *, /, and % represent arithmetic operations

- !, ||, and && represent logical operations

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Many programming tasks involve not only operators, but also functions

We will use functions

1. From implicitly imported system libraries (java.lang package)

2. From explicitly imported third-party libraries (stdlib and dsa packages)

3. That we define ourselves

A function is called as <name>(<arg1>, <arg2>, ...) or <library>.<name>(<arg1>, <arg2>, ...)

Example: StdOut.println("Hello, World") and Math.sqrt(2)

A function that does not return a value is called a void function (eg, StdOut.println())

A function that returns a value is called a non-void function (eg, Math.sqrt())

Expressions · Functions

Example

² java.lang.Math

static double pow(double x, double y) returns xy

static double sqrt(double x) returns
√

x

² java.lang.System

static void exit(int x) shuts down the JVM with exit code x

² java.lang.Integer

static int parseInt(String s) returns int value of s

² java.lang.Double

static double parseDouble(String s) returns double value of s

Expressions · Functions

Example

² java.lang.Math

static double pow(double x, double y) returns xy

static double sqrt(double x) returns
√

x

² java.lang.System

static void exit(int x) shuts down the JVM with exit code x

² java.lang.Integer

static int parseInt(String s) returns int value of s

² java.lang.Double

static double parseDouble(String s) returns double value of s

Expressions · Functions

Example

² stdlib.StdOut

static void println(Object x) prints an object and a newline to standard output

static void print(Object x) prints an object to standard output

² stdlib.StdRandom

static double uniform(double a, double b) returns a double chosen uniformly at random from the interval [a, b)

static boolean bernoulli(double p) returns true with probability p and false with probability 1 - p

² stdlib.StdStats

static double mean(double[] a) returns the average value in the array a

static double stddev(double[] a) returns the sample standard deviation in the array a

Expressions · Functions

Example

² stdlib.StdOut

static void println(Object x) prints an object and a newline to standard output

static void print(Object x) prints an object to standard output

² stdlib.StdRandom

static double uniform(double a, double b) returns a double chosen uniformly at random from the interval [a, b)

static boolean bernoulli(double p) returns true with probability p and false with probability 1 - p

² stdlib.StdStats

static double mean(double[] a) returns the average value in the array a

static double stddev(double[] a) returns the sample standard deviation in the array a

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- Math.sqrt(b * b - 4 * a * c)

- (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- Math.sqrt(b * b - 4 * a * c)

- (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- Math.sqrt(b * b - 4 * a * c)

- (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- Math.sqrt(b * b - 4 * a * c)

- (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Statements

A syntactic unit that expresses some action to be carried out

Example

import stdlib.StdOut;

String message = "Hello , World";

StdOut.println(message);

Statements

A syntactic unit that expresses some action to be carried out

Example

import stdlib.StdOut;

String message = "Hello , World";

StdOut.println(message);

Statements

A syntactic unit that expresses some action to be carried out

Example

import stdlib.StdOut;

String message = "Hello , World";

StdOut.println(message);

Statements · Import Statements

import <library >;

Example

import stdlib.StdOut;

import dsa.BinarySearch;

Statements · Import Statements

import <library >;

Example

import stdlib.StdOut;

import dsa.BinarySearch;

Statements · Import Statements

import <library >;

Example

import stdlib.StdOut;

import dsa.BinarySearch;

Statements · Function Call Statements

<name >(<arg1 >, <arg2 >, ...);

<library >.<name >(<arg1 >, <arg2 >, ...);

Example

StdOut.println("To be, or not to be, that is the question.");

System.exit (0);

Statements · Function Call Statements

<name >(<arg1 >, <arg2 >, ...);

<library >.<name >(<arg1 >, <arg2 >, ...);

Example

StdOut.println("To be, or not to be, that is the question.");

System.exit (0);

Statements · Function Call Statements

<name >(<arg1 >, <arg2 >, ...);

<library >.<name >(<arg1 >, <arg2 >, ...);

Example

StdOut.println("To be, or not to be, that is the question.");

System.exit (0);

Statements · Declaration, Assignment, and Initialization Statements

Declaration statement

<type > <name >;

<type > <name1 >, <name2 >, <name3 >, ...;

Initial value is false for boolean type, 0 for other basic types, and null for reference types

Assignment statement

<name > = <expression >;

Initialization statement

<type > <name > = <expression >;

<type > <name1 > = <expression1 >, <name2 > = <expression2 >, <name3 > = <expression3 >, ...;

Statements · Declaration, Assignment, and Initialization Statements

Declaration statement

<type > <name >;

<type > <name1 >, <name2 >, <name3 >, ...;

Initial value is false for boolean type, 0 for other basic types, and null for reference types

Assignment statement

<name > = <expression >;

Initialization statement

<type > <name > = <expression >;

<type > <name1 > = <expression1 >, <name2 > = <expression2 >, <name3 > = <expression3 >, ...;

Statements · Declaration, Assignment, and Initialization Statements

Declaration statement

<type > <name >;

<type > <name1 >, <name2 >, <name3 >, ...;

Initial value is false for boolean type, 0 for other basic types, and null for reference types

Assignment statement

<name > = <expression >;

Initialization statement

<type > <name > = <expression >;

<type > <name1 > = <expression1 >, <name2 > = <expression2 >, <name3 > = <expression3 >, ...;

Statements · Declaration, Assignment, and Initialization Statements

Declaration statement

<type > <name >;

<type > <name1 >, <name2 >, <name3 >, ...;

Initial value is false for boolean type, 0 for other basic types, and null for reference types

Assignment statement

<name > = <expression >;

Initialization statement

<type > <name > = <expression >;

<type > <name1 > = <expression1 >, <name2 > = <expression2 >, <name3 > = <expression3 >, ...;

Statements · Declaration, Assignment, and Initialization Statements

Example

int a = 42;

double b = 3.14159;

boolean c;

String d = "Java", e;

a b c d e

42

int

3.14159

double

false

boolean

"Java"

String

null

Statements · Declaration, Assignment, and Initialization Statements

Example

int a = 42;

double b = 3.14159;

boolean c;

String d = "Java", e;

a b c d e

42

int

3.14159

double

false

boolean

"Java"

String

null

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

1 42

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

2 42 1729

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

4 42 1729 42

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

5 1729 1729 42

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

6 1729 42 42

&

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

8 1729 42 42

&

1729

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

9 1729 42 42

&

1729

42

Statements · Declaration, Assignment, and Initialization Statements

Example (swapping idiom)

1 int a = 42;

2 int b = 1729;

3
4 int t = a;

5 a = b;

6 b = t;

7
8 StdOut.println(a);

9 StdOut.println(b);

 Variable Trace

line # a b t

&

1729

42

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

1 1

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

2 10

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

3 5

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

4 2

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

5 4

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

6 3

&

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

8 3

&

3

Statements · Declaration, Assignment, and Initialization Statements

Example (variable update)

1 int x = 1;

2 x = x * 10;

3 x = x / 2;

4 x = x % 3;

5 x = x + 2;

6 x = x - 1;

7
8 StdOut.println(x);

 Variable Trace

line # x

&

3

Statements · Declaration, Assignment, and Initialization Statements

The assignment statement

<name > = <name > <operator > <expression >

is equivalent to

<name > <operator >= <expression >

where <operator> is *, /, %, +, or -

Example

x = x * 10;

x = x / 2;

x = x % 3;

x = x + 2;

x = x - 1;

are equivalent to

x *= 10;

x /= 2;

x %= 3;

x += 2;

x -= 1;

Statements · Declaration, Assignment, and Initialization Statements

The assignment statement

<name > = <name > <operator > <expression >

is equivalent to

<name > <operator >= <expression >

where <operator> is *, /, %, +, or -

Example

x = x * 10;

x = x / 2;

x = x % 3;

x = x + 2;

x = x - 1;

are equivalent to

x *= 10;

x /= 2;

x %= 3;

x += 2;

x -= 1;

Statements · Declaration, Assignment, and Initialization Statements

The assignment statement

<name > = <name > <operator > <expression >

is equivalent to

<name > <operator >= <expression >

where <operator> is *, /, %, +, or -

Example

x = x * 10;

x = x / 2;

x = x % 3;

x = x + 2;

x = x - 1;

are equivalent to

x *= 10;

x /= 2;

x %= 3;

x += 2;

x -= 1;

Statements · Declaration, Assignment, and Initialization Statements

More equivalent assignment statements

x = x + 1;

x++;

++x;

x = x - 1;

x--;

--x;

Statements · Declaration, Assignment, and Initialization Statements

More equivalent assignment statements

x = x + 1;

x++;

++x;

x = x - 1;

x--;

--x;

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings

The String data type, which is a reference type, represents strings (sequences of characters)

A String literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" and "123" + 456 evaluate to "123456"

Strings · Example (Date Formats)

L DateFormats.java

Command-line input d (String), m (String), and y (String) representing a date

Standard output the date in different formats

Strings · Example (Date Formats)

L DateFormats.java

Command-line input d (String), m (String), and y (String) representing a date

Standard output the date in different formats

Strings · Example (Date Formats)

L DateFormats.java

Command-line input d (String), m (String), and y (String) representing a date

Standard output the date in different formats

& ~/workspace/dsaj

$ _

Strings · Example (Date Formats)

L DateFormats.java

Command-line input d (String), m (String), and y (String) representing a date

Standard output the date in different formats

& ~/workspace/dsaj

$ java DateFormats 14 03 1879

Strings · Example (Date Formats)

L DateFormats.java

Command-line input d (String), m (String), and y (String) representing a date

Standard output the date in different formats

& ~/workspace/dsaj

$ java DateFormats 14 03 1879

14/03/1879

03/14/1879

1879/03/14

$ _

Strings · Example (Date Formats)

/ DateFormats.java

1 import stdlib.StdOut;

2
3 public class DateFormats {

4 public static void main(String [] args) {

5 String d = args [0];

6 String m = args [1];

7 String y = args [2];

8 String dmy = d + "/" + m + "/" + y;

9 String mdy = m + "/" + d + "/" + y;

10 String ymd = y + "/" + m + "/" + d;

11 StdOut.println(dmy);

12 StdOut.println(mdy);

13 StdOut.println(ymd);

14 }

15 }

Strings · Example (Date Formats)

/ DateFormats.java

1 import stdlib.StdOut;

2
3 public class DateFormats {

4 public static void main(String [] args) {

5 String d = args [0];

6 String m = args [1];

7 String y = args [2];

8 String dmy = d + "/" + m + "/" + y;

9 String mdy = m + "/" + d + "/" + y;

10 String ymd = y + "/" + m + "/" + d;

11 StdOut.println(dmy);

12 StdOut.println(mdy);

13 StdOut.println(ymd);

14 }

15 }

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

& ~/workspace/dsaj

$ _

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

& ~/workspace/dsaj

$ java SumOfSquares 3 4

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

& ~/workspace/dsaj

$ java SumOfSquares 3 4

25

$ _

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

& ~/workspace/dsaj

$ java SumOfSquares 3 4

25

$ java SumOfSquares 6 8

Integers · Example (Sum of Squares)

L SumOfSquares.java

Command-line input x (int) and y (int)

Standard output x2 + y2

& ~/workspace/dsaj

$ java SumOfSquares 3 4

25

$ java SumOfSquares 6 8

100

$ _

Integers · Example (Sum of Squares)

/ SumOfSquares.java

1 import stdlib.StdOut;

2
3 public class SumOfSquares {

4 public static void main(String [] args) {

5 int x = Integer.parseInt(args [0]);

6 int y = Integer.parseInt(args [1]);

7 int result = x * x + y * y;

8 StdOut.println(result);

9 }

10 }

Integers · Example (Sum of Squares)

/ SumOfSquares.java

1 import stdlib.StdOut;

2
3 public class SumOfSquares {

4 public static void main(String [] args) {

5 int x = Integer.parseInt(args [0]);

6 int y = Integer.parseInt(args [1]);

7 int result = x * x + y * y;

8 StdOut.println(result);

9 }

10 }

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles

The double data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

& ~/workspace/dsaj

$ _

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

& ~/workspace/dsaj

$ java Quadratic 1 -5 6

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

& ~/workspace/dsaj

$ java Quadratic 1 -5 6

Root 1 = 3.0

Root 2 = 2.0

$ _

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

& ~/workspace/dsaj

$ java Quadratic 1 -5 6

Root 1 = 3.0

Root 2 = 2.0

$ java Quadratic 1 -1 -1

Doubles · Example (Quadratic Formula)

L Quadratic.java

Command-line input a (double), b (double), and c (double)

Standard output the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

& ~/workspace/dsaj

$ java Quadratic 1 -5 6

Root 1 = 3.0

Root 2 = 2.0

$ java Quadratic 1 -1 -1

Root 1 = 1.618033988749895

Root 2 = -0.6180339887498949

$ _

Doubles · Example (Quadratic Formula)

/ Quadratic.java

1 import stdlib.StdOut;

2
3 public class Quadratic {

4 public static void main(String [] args) {

5 double a = Double.parseDouble(args [0]);

6 double b = Double.parseDouble(args [1]);

7 double c = Double.parseDouble(args [2]);

8 double discriminant = b * b - 4 * a * c;

9 double root1 = (-b + Math.sqrt(discriminant)) / (2 * a);

10 double root2 = (-b - Math.sqrt(discriminant)) / (2 * a);

11 StdOut.println("Root # 1 = " + root1);

12 StdOut.println("Root # 2 = " + root2);

13 }

14 }

Doubles · Example (Quadratic Formula)

/ Quadratic.java

1 import stdlib.StdOut;

2
3 public class Quadratic {

4 public static void main(String [] args) {

5 double a = Double.parseDouble(args [0]);

6 double b = Double.parseDouble(args [1]);

7 double c = Double.parseDouble(args [2]);

8 double discriminant = b * b - 4 * a * c;

9 double root1 = (-b + Math.sqrt(discriminant)) / (2 * a);

10 double root2 = (-b - Math.sqrt(discriminant)) / (2 * a);

11 StdOut.println("Root # 1 = " + root1);

12 StdOut.println("Root # 2 = " + root2);

13 }

14 }

Booleans

The boolean data type represents truth values (true or false) from logic

The two boolean literals are true and false

Operations

- Logical not (!)

- Logical or (||)

- Logical and (&&)

Truth tables for the logical operations

x !x

false true

true false

x y x || y

false false false

false true true

true false true

true true true

x y x && y

false false false

false true false

true false false

true true true

Booleans

The boolean data type represents truth values (true or false) from logic

The two boolean literals are true and false

Operations

- Logical not (!)

- Logical or (||)

- Logical and (&&)

Truth tables for the logical operations

x !x

false true

true false

x y x || y

false false false

false true true

true false true

true true true

x y x && y

false false false

false true false

true false false

true true true

Booleans

The boolean data type represents truth values (true or false) from logic

The two boolean literals are true and false

Operations

- Logical not (!)

- Logical or (||)

- Logical and (&&)

Truth tables for the logical operations

x !x

false true

true false

x y x || y

false false false

false true true

true false true

true true true

x y x && y

false false false

false true false

true false false

true true true

Booleans

The boolean data type represents truth values (true or false) from logic

The two boolean literals are true and false

Operations

- Logical not (!)

- Logical or (||)

- Logical and (&&)

Truth tables for the logical operations

x !x

false true

true false

x y x || y

false false false

false true true

true false true

true true true

x y x && y

false false false

false true false

true false false

true true true

Booleans

The boolean data type represents truth values (true or false) from logic

The two boolean literals are true and false

Operations

- Logical not (!)

- Logical or (||)

- Logical and (&&)

Truth tables for the logical operations

x !x

false true

true false

x y x || y

false false false

false true true

true false true

true true true

x y x && y

false false false

false true false

true false false

true true true

Booleans · Comparison Operators

Two values of the same basic type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to false

- Not equal (!=) — eg, 5 != 2 evaluates to true

- Less than (<) — eg, 5 < 2 evaluates to false

- Less than or equal (<=) — eg, 5 <= 2 evaluates to false

- Greater than (>) — eg, 5 > 2 evaluates to true

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to true

Booleans · Comparison Operators

Two values of the same basic type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to false

- Not equal (!=) — eg, 5 != 2 evaluates to true

- Less than (<) — eg, 5 < 2 evaluates to false

- Less than or equal (<=) — eg, 5 <= 2 evaluates to false

- Greater than (>) — eg, 5 > 2 evaluates to true

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to true

Booleans · Comparison Operators

Two values of the same basic type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to false

- Not equal (!=) — eg, 5 != 2 evaluates to true

- Less than (<) — eg, 5 < 2 evaluates to false

- Less than or equal (<=) — eg, 5 <= 2 evaluates to false

- Greater than (>) — eg, 5 > 2 evaluates to true

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to true

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ java LeapYear 1900

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ java LeapYear 1900

false

$ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ java LeapYear 1900

false

$ java LeapYear 2000

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ java LeapYear 1900

false

$ java LeapYear 2000

true

$ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

L LeapYear.java

Command-line input y (int)

Standard output true if y is a leap year and false otherwise

& ~/workspace/dsaj

$ java LeapYear 2020

true

$ java LeapYear 1900

false

$ java LeapYear 2000

true

$ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans · Example (Leap Year)

/ LeapYear.java

1 import stdlib.StdOut;

2
3 public class LeapYear {

4 public static void main(String [] args) {

5 int y = Integer.parseInt(args [0]);

6 boolean result = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

7 StdOut.println(result);

8 }

9 }

Booleans · Example (Leap Year)

/ LeapYear.java

1 import stdlib.StdOut;

2
3 public class LeapYear {

4 public static void main(String [] args) {

5 int y = Integer.parseInt(args [0]);

6 boolean result = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

7 StdOut.println(result);

8 }

9 }

Operator Precedence

From highest to lowest

+, - unary

*, /, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, *=, /=, %=, +=, -= assignment

!, ||, && logical

Example: 2 + 3 * 4 evaluates to 14

Parentheses can be used to override precedence rules

Example: (2 + 3) * 4 evaluates to 20

Operator Precedence

From highest to lowest

+, - unary

*, /, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, *=, /=, %=, +=, -= assignment

!, ||, && logical

Example: 2 + 3 * 4 evaluates to 14

Parentheses can be used to override precedence rules

Example: (2 + 3) * 4 evaluates to 20

Operator Precedence

From highest to lowest

+, - unary

*, /, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, *=, /=, %=, +=, -= assignment

!, ||, && logical

Example: 2 + 3 * 4 evaluates to 14

Parentheses can be used to override precedence rules

Example: (2 + 3) * 4 evaluates to 20

Operator Precedence

From highest to lowest

+, - unary

*, /, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, *=, /=, %=, +=, -= assignment

!, ||, && logical

Example: 2 + 3 * 4 evaluates to 14

Parentheses can be used to override precedence rules

Example: (2 + 3) * 4 evaluates to 20

Operator Precedence

From highest to lowest

+, - unary

*, /, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, *=, /=, %=, +=, -= assignment

!, ||, && logical

Example: 2 + 3 * 4 evaluates to 14

Parentheses can be used to override precedence rules

Example: (2 + 3) * 4 evaluates to 20

	Outline
	Data Types
	Expressions
	Literals
	Identifiers
	Variables
	Operators
	Functions

	Expressions
	Statements
	Import Statements
	Function Call Statements
	Declaration, Assignment, and Initialization Statements

	Strings
	Example (Date Formats)

	Integers
	Example (Sum of Squares)

	Doubles
	Example (Quadratic Formula)

	Booleans
	Comparison Operators
	Example (Leap Year)

	Operator Precedence

