
Data Structures and Algorithms in Java
Assignment 2 (Global Sequence Alignment) Discussion



Part I (Warmup Problems) · Problem 1 (Reverse)

L Reverse.java

Standard input a sequence of strings

Standard output the strings in reverse order

& ~/workspace/global sequence alignment

$ javac -d out src/Reverse.java

$ java Reverse

b o l t o n

<ctrl -d>

n o t l o b

$ java Reverse

m a d a m

<ctrl -d>

m a d a m



Part I (Warmup Problems) · Problem 1 (Reverse)

Read all strings from standard input into an array a (use StdIn.readAllStrings())

Set n to the size of a

For each int i ∈ [0, n/2)

- Exchange a[i ] with a[n − i − 1]

For each int i ∈ [0, n)

- If i < n − 1, write a[i ] with a space after; otherwise, write a[i ] with a newline after



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

L Distance.java

Command-line input n (int)

Standard input two size-n arrays x and y of doubles

Standard output the Euclidean distance between the two vectors represented by x and y

& ~/workspace/global sequence alignment

$ javac -d out src/Distance.java

$ java Distance 2

1 0 0 1 <enter >

1.4142135623730951

$ java Distance 5

-9 1 10 -1 1 -5 9 6 7 4 <enter >

13.0



Part I (Warmup Problems) · Problem 2 (Euclidean Distance)

Accept n (int) as command-line argument

Create a size-n array x of doubles

For each int i ∈ [0, n)

- Set a[i ] to a double read from standard input (use StdIn.readDouble())

Create and initialize a size-n array y of doubles similar to x

Set sum (double) to 0

For each int i ∈ [0, n)

- Increment sum by (x[i ]− y [i ])2

Write
√
sum



Part I (Warmup Problems) · Problem 3 (Transpose)

L Transpose.java

Command-line input m (int) and n (int)

Standard input m × n doubles representing the elements of an m × n matrix a

Standard output the transpose of a

& ~/workspace/global sequence alignment

$ javac -d out src/Transpose.java

$ java Transpose 2 2

1 2 3 4 <enter >

1.0 3.0

2.0 4.0

$ java Transpose 2 3

1 2 3 4 5 6 <enter >

1.0 4.0

2.0 5.0

3.0 6.0



Part I (Warmup Problems) · Problem 3 (Transpose)

Accept m (int) and n (int) as command-line arguments

Create an m × n array a of doubles

For each int i ∈ [0,m)

- For each int j ∈ [0, n)

- Set a[i ][j] to a double read from standard input (use StdIn.readDouble())

Create an n ×m array c of doubles

For each int i ∈ [0, n)

- For each int j ∈ [0,m)

- Set c[i ][j] to a[j][i ]

For each int i ∈ [0, n)

- For each int j ∈ [0,m)

- If j < m − 1, write c[i ][j] with a space after; otherwise, write c[i ][j] with a newline after



Part I (Warmup Problems) · Problem 4 (Strange Matrix)

L StrangeMatrix.java

Command-line input m (int) and n (int)

Standard output an m × n (strange) matrix

& ~/workspace/global sequence alignment

$ javac -d out src/StrangeMatrix.java

$ java StrangeMatrix 4 5

147 66 27 10 3

54 27 12 5 2

17 10 5 2 1

4 3 2 1 0



Part I (Warmup Problems) · Problem 4 (Strange Matrix)

Accept m (int) and n (int) as command-line arguments

Create an m × n array a of ints

For each int i ∈ [0,m)

- Set a[i ][n − 1] to m − i − 1

For each int j ∈ [0, n)

- Set a[m − 1][j] to n − j − 1

For each int i ∈ [m − 2, 0]

- For each int j ∈ [n − 2, 0]

- Set a[i ][j] to a[i ][j + 1] + a[i + 1][j + 1] + a[i + 1][j]

For each int i ∈ [0,m)

- For each int j ∈ [0, n)

- If j < n − 1, write a[i ][j] with the format string "%5d "; otherwise, write a[i ][j] with the format string "%5d\n"



Part I (Warmup Problems) · Problem 5 (Pascal’s Triangle)

L Pascal.java

Command-line input n (int)

Standard output Pascal’s triangle Pn

& ~/workspace/global sequence alignment

$ javac -d out src/Pascal.java

$ java Pascal 5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1



Part I (Warmup Problems) · Problem 5 (Pascal’s Triangle)

Accept n (int) as command-line argument

Create a 2D array a of ints with n + 1 rows (leave the column capacity empty)

For each int i ∈ [0, n]

- Set a[i ] to an array of i + 1 ints

- For each int j ∈ [0, i ]

- Set a[i ][j] to 1

For each int i ∈ [0, n]

- For each int j ∈ [1, i)

- Set a[i ][j] to a[i − 1][j − 1] + a[i − 1][j]

For each int i ∈ [0, n]

- For each int j ∈ [0, i ]

- If j < i , write a[i ][j] with a space after; otherwise, write a[i ][j] with a newline after



Part II (Global Sequence Alignment) · Introduction

Goal: find an optimal alignment for two DNA sequences x and y

We are permitted to insert gaps in either sequence to make them have the same length

We pay a penalty for each gap that we insert and also for each pair of characters that mismatch

Operation Cost

Insert a gap 2

Align two characters that do not match 1

Align two characters that do match 0



Part II (Global Sequence Alignment) · Introduction

Edit distance is the cost of the best possible alignment between the two genetic sequences over all possible alignments

Two possible alignments of the sequences x = "AACAGTTACC" and y = "TAAGGTCA"

x y cost x y cost

-------------- --------------

A T 1 A T 1

A A 0 A A 0

C A 1 C - 2

A G 1 A A 0

G G 0 G G 0

T T 0 T G 1

T C 1 T T 0

A A 0 A - 2

C - 2 C C 0

C - 2 C A 1

--- ---

8 7

Edit distance for the two sequences is 7



Part II (Global Sequence Alignment) · Notation

m and n denote the lengths of x and y, respectively

x[i] denotes the ith character of the sequence x

x[i..m] denotes the suffix of x consisting of the characters x[i], x[i + 1], ..., x[m - 1]

opt is the (m + 1) x (n + 1) edit-distance matrix

opt[i][j] denotes the edit distance of x[i..m] and y[j..n]

Example: if x = "AACAGTTACC" and y = "TAAGGTCA", then

- m = 10 and n = 8

- x[2] is ’C’

- x[5..m] is "CAGTTACC" and y[8..n] is ""

- opt is a 11 x 9 matrix

- opt[0][0] is the edit distance of x and y



Part II (Global Sequence Alignment) · Recursive Solution

Case 1 (x[i] is matched with y[j]): opt[i][j] = opt[i + 1][j + 1] + 0 or 1 depending on whether x[i] equals y[j]

Case 2 (x[i] is matched with a gap): opt[i][j] = opt[i + 1][j] + 2

Case 3 (y[j] is matched with a gap): opt[i][j] = opt[i][j + 1] + 2

We compute opt[i][j] by taking the minimum of the three quantities

opt[i][j] = min(opt[i + 1][j + 1] + 0 or 1, opt[i + 1][j] + 2, opt[i][j + 1] + 2)

Direct computation of this recursive scheme is spectacularly inefficient

We use dynamic programming

Key idea: break up a large problem into smaller subproblems, store the answers to those smaller subproblems, and use
the stored answers to solve the original problem



Part II (Global Sequence Alignment) · Problem 6 (Compute Edit Distance)

Write a program called EditDistance.java that reads strings x and y from standard input; computes the edit-distance matrix
opt; and outputs x, y, the dimensions of opt, and opt

& ~/workspace/global sequence alignment

$ javac -d out src/EditDistance.java

$ java EditDistance < data/example10.txt

AACAGTTACC

TAAGGTCA

11 9

7 8 10 12 13 15 16 18 20

6 6 8 10 11 13 14 16 18

6 5 6 8 9 11 12 14 16

7 5 4 6 7 9 11 12 14

9 7 5 4 5 7 9 10 12

8 8 6 4 4 5 7 8 10

9 8 7 5 3 3 5 6 8

11 9 7 6 4 2 3 4 6

13 11 9 7 5 3 1 3 4

14 12 10 8 6 4 2 1 2

16 14 12 10 8 6 4 2 0



Part II (Global Sequence Alignment) · Problem 6 (Compute Edit Distance)

Read sequences x (String) and y (String) from standard input

Set m (int) and n (int) to the lenghts of x and y, respectively (use GSA.length())

Create an (m + 1) x (n + 1) array opt of ints

Initialize the rightmost column of opt to 2(m - i), where 0 <= i <= m

Initialize the bottommost row of opt to 2(n - j), where 0 <= j <= n



Part II (Global Sequence Alignment) · Problem 6 (Compute Edit Distance)

Fill in the rest of opt, starting at opt[m - 1][n - 1] and ending at opt[0][0], as follows (use GSA.charAt() and GSA.min() where needed)

- If x[i] = y[j] then opt[i][j] = min(opt[i + 1][j + 1], opt[i + 1][j] + 2, opt[i][j + 1] + 2)

- Otherwise, opt[i][j] = min(opt[i + 1][j + 1] + 1, opt[i + 1][j] + 2, opt[i][j + 1] + 2)

Write the following output, each starting on a new line

- x

- y

- m and n separated by a space

- opt using the format string "%3d " for elements not in the last column, and "%3d\n" for the last-column elements



Part II (Global Sequence Alignment) · Problem 7 (Recover Alignment)

Write a program Alignment.java that reads from standard input the output produced by EditDistance.java; recovers an optimal
alignment between x and y; and writes the edit distance and the alignment

& ~/workspace/global sequence alignment

$ javac -d out src/Alignment.java

$ java EditDistance < data/example10.txt | java Alignment

7

A T 1

A A 0

C - 2

A A 0

G G 0

T G 1

T T 0

A - 2

C C 0

C A 1



Part II (Global Sequence Alignment) · Problem 7 (Recover Alignment)

Read sequences x (String) and y (String) from standard input

Set m (int) and n (int) to the lenghts of x and y, respectively

Read the edit-distance matrix opt from standard input (use StdArrayIO.readInt2D())

Write the edit distance between x and y, ie, the value of opt[0][0]



Part II (Global Sequence Alignment) · Problem 7 (Recover Alignment)

Set ints i and j both to 0

Recover and output the optimal alginment, starting at opt[0][0] and ending at opt[m - 1][n - 1], as follows

- If opt[i][j] = opt[i + 1][j] + 2, then align x[i] with a gap and penalty of 2, and increment i

- Otherwise, if opt[i][j] = opt[i][j + 1] + 2, then align y[j] with a gap and penalty of 2, and increment j

- Otherwise, align x[i] with y[j] with a penalty of 0 or 1 depending on whether x[i] equals y[j], and increment both i

and j

If y is exhausted before x (ie, i < m), align the remaining x with gaps and penalty of 2

If x is exhausted before y (ie, j < n), align the remaining y with gaps and penalty of 2


	Part I (Warmup Problems)
	Problem 1 (Reverse)
	Problem 2 (Euclidean Distance)
	Problem 3 (Transpose)
	Problem 4 (Strange Matrix)
	Problem 5 (Pascal's Triangle)

	Part II (Global Sequence Alignment)
	Introduction
	Notation
	Recursive Solution
	Problem 6 (Compute Edit Distance)
	Problem 7 (Recover Alignment)


