Data Structures and Algorithms in Java
Assignment 2 (Global Sequence Alignment) Discussion

Part | (Warmup Problems) - Problem 1 (Reverse)

[Reverse.java

Standard input ‘ a sequence of strings

Standard output ‘ the strings in reverse order

>_ ~/workspace/global_sequence.alignment

$ javac -d out src/Reverse.java
$ java Reverse

bolton

<ctrl-d>

notlob

$ java Reverse

madam

<ctrl-d>

madam

Part | (Warmup Problems) - Problem 1 (Reverse)

Read all strings from standard input into an array a (use stdin.readal1stringsO)
Set n to the size of a

For each int i € [0, n/2)
- Exchange a[i] with a[n — i — 1]

For each int i € [0, n)

- If i < n—1, write a[i] with a space after; otherwise, write a[i] with a newline after

Part | (Warmup Problems) - Problem 2 (Euclidean Distance)

(@ Distance.java

Command-line input | n (int)

Standard input two size-n arrays x and y of doubles

Standard output the Euclidean distance between the two vectors represented by x and y

>_ ~/workspace/global._sequence.-alignment

$ javac -d out src/Distance.java
$ java Distance 2

10 0 1 <enter>
1.4142135623730951

$ java Distance 5

-9 110 -1 1 -5 9 6 7 4 <enter>
13.0

Part | (Warmup Problems) - Problem 2 (Euclidean Distance)

Accept n (int) as command-line argument
Create a size-n array x of doubles

For each int i € [0, n)

- Set a[i] to a double read from standard input (use scarn.readvouble())

Create and initialize a size-n array y of doubles similar to x
Set sum (double) to 0

For each int i € [0, n)

- Increment sum by (x[i] — y[i])?

Write /sum

Part | (Warmup Problems) - Problem 3 (Transpose)

(@ Transpose.java

Command-line input | m (int) and n (int)

Standard input m X n doubles representing the elements of an m X n matrix a

Standard output the transpose of a

>_ ~/workspace/global_sequence-alignment

$ javac -d out src/Transpose.java
$ java Transpose 2 2

1 2 3 4 <enter>

1.0 3.
2.0 4.0

$ java Transpose 2 3
123 45 6 <enter>
1.0 4.0

2.0 5.0

3.0 6.0

Part | (Warmup Problems) - Problem 3 (Transpose)

Accept m (int) and n (int) as command-line arguments
Create an m X n array a of doubles

For each int /i € [0, m)
- For each int j € [0, n)
- Set a[i][j] to a double read from standard input (use starm.readbouble0))

Create an n X m array c of doubles

For each int i € [0, n)
- For each int j € [0, m)

- Set c[i][j] to a[j][/]

For each int j € [0, n)
- For each int j € [0, m)
- If j < m—1, write c[/][j] with a space after; otherwise, write c[i][j] with a newline after

Part | (Warmup Problems) - Problem 4 (Strange Matrix)

(# StrangeMatrix.java

Command-line input ‘ m (int) and n (int)

Standard output ‘ an m X n (strange) matrix

>_ ~/workspace/global sequence.alignment

$ javac -d out src/StrangeMatrix.java
$ java StrangeMatrix 4 5

147 66 27 10 3
54 27 12 5 2
17 10 5 2 1

4 3 2 1 0

Part | (Warmup Problems) - Problem 4 (Strange Matrix)

Accept m (int) and n (int) as command-line arguments
Create an m x n array a of ints

For each int i € [0, m)
- Setali][n—1tom—i—1

For each int j € [0, n)
- Setafm—1][jJton—j—1

For each int i € [m — 2,0]
- For each int j € [n—2,0]
- Set a[i][j] to a[f][j + 1] + a[i + 1][j + 1] + a[i + 1][/]

For each int i/ € [0, m)
- For each int j € [0, n)

- If j < n—1, write a[i][j] with the format string sa »; otherwise, write a[i][j] with the format string "sa\a"

Part | (Warmup Problems) - Problem 5 (Pascal’s Triangle)

(@ Pascal.java

Command-line input ‘ n (int)

Standard output ‘ Pascal’s triangle P,

>_ "/workspace/global_sequence.alignment

$ javac -d out src/Pascal.java
$ java Pascal 5

B R e e e
SR TR CI
oW e

Part | (Warmup Problems) - Problem 5 (Pascal’s Triangle)

Accept n (int) as command-line argument
Create a 2D array a of ints with n+ 1 rows (leave the column capacity empty)

For each int i € [0, n]
- Set a[i] to an array of i + 1 ints
- For each int j € [0, /]
- Set a[i][j] to 1

For each int i € [0, n]
- For each int j € [1,/)
- Set a[i][j] to a[i — 1][j — 1] + a[i — 1][j]

For each int i € [0, n]
- For each int j € [0, i]
- If j < i, write a[i][j] with a space after; otherwise, write a[i][j] with a newline after

Part Il (Global Sequence Alignment) - Introduction

Goal: find an optimal alignment for two DNA sequences x and y
We are permitted to insert gaps in either sequence to make them have the same length

We pay a penalty for each gap that we insert and also for each pair of characters that mismatch

Operation Cost

Insert a gap 2

Align two characters that do not match 1

Align two characters that do match 0

Part Il (Global Sequence Alignment) - Introduction

Edit distance is the cost of the best possible alignment between the two genetic sequences over all possible alignments

Two possible alignments of the sequences x = "ancacrracer and y = "Tascerear

x y cost x y cost
A T 1 A T 1
A A 0 A A 0
C A 1 C - 2
A G 1 A A 0
G G 0 G G 0
T T 0 T G 1
T C 1 T T 0
A A [A - 2
C - 2 c C [
C - 2 c A 1
8 7

Edit distance for the two sequences is 7

Part Il (Global Sequence Alignment) - Notation

= and » denote the lengths of x and y, respectively

x[11 denotes the ith character of the sequence x

x[i..n] denotes the suffix of x consisting of the characters x1i1, x[i + 11, ..., x[n - 1]
opt is the m + 1 x @ + 1 edit-distance matrix

opt[i1[51 denotes the edit distance of xti..m1 and yrj..ul

Example: if x = "ancactracer and y = »Taacercar, then
-m=10andn-s
- x[2] is °¢
- x05..m] IS "cacTtacc' and yis..n] iS "
- opt IS @ 11 x 9 matrix

- optlo1f0] is the edit distance of x and y

Part Il (Global Sequence Alignment) - Recursive Solution

Case 1 (x111 is matched with yrj1): optli1 (i = optli + 1103 + 11 + 0 or 1 depending on whether x1:1 equals yin
Case 2 (xr11 is matched with a gap): optfi1031 = optli + 1115 + 2
Case 3 (yrj1 is matched with a gap): opt[i1j1 = optlil(j + 11 + 2

We compute opti1(51 by taking the minimum of the three quantities

opt[i]1[j] = min(opt[i + 1]1[j + 1] + 0 or 1, opt[i + 11[j] + 2, opt[il[j + 1] + 2)

Direct computation of this recursive scheme is spectacularly inefficient
We use dynamic programming

Key idea: break up a large problem into smaller subproblems, store the answers to those smaller subproblems, and use
the stored answers to solve the original problem

Part Il (Global Sequence Alignment) - Problem 6 (Compute Edit Distance)

Write a program called raitpistance.java that reads strings x and y from standard input; computes the edit-distance matrix
opt; and outputs x, y, the dimensions of opt, and opt

> orkspace/global sequence.alignment

$ javac -d out src/EditDistance.java

$ java EditDistance < data/examplel0.txt

AACAGTTACC

TAAGGTCA

11 9
7 8 10 12 13 15 16 18 20
6 6 8 10 11 13 14 16 18
6 5 6 8 9 11 12 14 16
7 5 4 6 7 9 11 12 14
9 7 5 4 5 7 9 10 12
8 8 6 4 4 5 7 8 10
9 8 7 5 3 3 5 6 8
11 9 7 6 4 2 3 4 6
13 11 9 7 5 3 1 3 4
14 12 10 8 6 4 2 1 2
16 14 12 10 8 6 4 2 0

Part Il (Global Sequence Alignment) - Problem 6 (Compute Edit Distance)

Read sequences x (String) and y (String) from standard input

Set » (int) and = (int) to the lenghts of x and y, respectively (use csa.1engtn0))
Create an @ + 1) x (@ + 1 array opt of ints

Initialize the rightmost column of opt to 2@ - 1), where o <= i <= n

Initialize the bottommost row of opt to 2 - j, where o0 <= j <= n

Part Il (Global Sequence Alignment) - Problem 6 (Compute Edit Distance)

Fill in the rest of opt, starting at optin - 11t - 11 and ending at opto1t01, as follows (use esa.charat) and csa.min where needed)
- If %031 = y350 then opt[i105] = minCoptli + 1105 + 11, optli + 1151 + 2, opt[i1[j + 1] + 2)

- Otherwise, opt[i1[j] = min(opti + 11[j + 11 + 1, opt[i + 11[j] + 2, opt[il[j + 1] + 2)

Write the following output, each starting on a new line
- x
-y
- m and » separated by a space

- opt using the format string "za » for elements not in the last column, and "zaw for the last-column elements

Part Il (Global Sequence Alignment) - Problem 7 (Recover Alignment)

Write a program aligmment.java that reads from standard input the output produced by raitpistance.java; recovers an optimal
alignment between x and y; and writes the edit distance and the alignment

orkspace/global sequence.alignment

javac -d out src/Alignment.java
java EditDistance < data/examplelO.txt | java Alignment

carHHaErQE> NGB 6
a1l Haa® | =H
LHONOROONOR

Part Il (Global Sequence Alignment) - Problem 7 (Recover Alignment)

Read sequences x (String) and y (String) from standard input
Set » (int) and » (int) to the lenghts of x and y, respectively
Read the edit-distance matrix opt from standard input (use staarrayro.readint2p0))

Write the edit distance between x and y, ie, the value of optro1(01

Part Il (Global Sequence Alignment) - Problem 7 (Recover Alignment)

Set ints i and j both to o

Recover and output the optimal alginment, starting at optio1t01 and ending at optim - 11t - 11, as follows
- If optrilry1 = optri + 11051 + 2, then align xr:1 with a gap and penalty of 2, and increment :
- Otherwise, if opt[i10j1 = optlil[j + 11 + 2, then align yr51 with a gap and penalty of 2, and increment ;

- Otherwise, align xr:1 with yrj1 with a penalty of 0 or 1 depending on whether x111 equals yrj1, and increment both 1
and ;

If y is exhausted before x (ie, 1 <), align the remaining x with gaps and penalty of 2

If x is exhausted before y (ie, j <a), align the remaining y with gaps and penalty of 2

	Part I (Warmup Problems)
	Problem 1 (Reverse)
	Problem 2 (Euclidean Distance)
	Problem 3 (Transpose)
	Problem 4 (Strange Matrix)
	Problem 5 (Pascal's Triangle)

	Part II (Global Sequence Alignment)
	Introduction
	Notation
	Recursive Solution
	Problem 6 (Compute Edit Distance)
	Problem 7 (Recover Alignment)

