
Data Structures and Algorithms in Java
Assignment 3 (Percolation) Discussion

Part I (Warmup Problems) · Problem 1 (Die Data Type)

Implement a data type called Die that represents a six-sided die and supports the following API

² Die

Die() constructs a die with the face value -1

void roll() rolls this die

int value() returns the face value of this die

boolean equals(Die other) returns true if this die is the same as other, and false otherwise

String toString() returns a string representation of this die

& ~/workspace/percolation

$ javac -d out src/Die.java

$ java Die

* *

*

* *

$ java Die

*

*

Part I (Warmup Problems) · Problem 1 (Die Data Type)

Instance variables

- Face value of the die, value (int)

Die()

- Set this.value to -1

void roll()

- Set this.value to a random integer from [0, 7)

int value()

- Return this.value

boolean equals(Object other)

- Return true if this die and other have the same value, and false otherwise

String toString()

- Return a string representation of the die (use the format ".....\n.....\n.....", where each . is either a space or a *)

Part I (Warmup Problems) · Problem 2 (Location Data Type)

Implement a data type called Location that represents a location on Earth and supports the following API

² Location

Location(String name, double lat, double lon) constructs a new location given its name, latitude, and longitude

double distanceTo(Location other) returns the great-circle distance between this location and other

boolean equals(Object other) returns true if the latitude and longitude of this location are the same as those
of other, and false otherwise

String toString() returns a string representation of this location

& ~/workspace/percolation

$ javac -d out src/Location.java

$ java Location

x = Paris (48.51 , -2.17)

y = Boston (42.36 , -71.05)

x.distanceTo(y) = 5224.780334245809

x.equals(y) = false

Part I (Warmup Problems) · Problem 2 (Location Data Type)

Instance variables

- Name of the location, name (String)

- Latitude of the location, lat (double)

- Longitude of the location, lon (double)

Location(String name, double lat, double lon)

- Set this.name to name, this.lat to lat, and this.lon to lon

double distanceTo(Location other)

- Return the great-circle distance between this location and other computed using the formula from Problem 3 of
Assignment 1

boolean equals(Object other)

- Return true if this location and other have the same latitude and longitude values, and false otherwise

String toString()

- Return a string representation of the location (use the format "<lat>, <lon>")

Part I (Warmup Problems) · Problem 3 (Rational Data Type)

Implement an immutable data type called Rational that represents a rational number and supports the following API

² Rational

Rational(long x) constructs a rational number whose numerator is x and denominator is 1

Rational(long x, long y) constructs a rational number given its numerator x and denominator y

Rational add(Rational other) returns the sum of this rational number and other

Rational multiply(Rational other) returns the product of this rational number and other

boolean equals(Object other) returns true if this rational number is equal to other, and false otherwise

String toString() returns a string representation of this rational number

& ~/workspace/percolation

$ javac -d out src/Rational.java

$ java Rational 10

1 + 1/2 + 1/4 + ... + 1/2^10 = 1023/512

Part I (Warmup Problems) · Problem 3 (Rational Data Type)

Instance variables

- Numerator, x (long)

- Denominator, y (long)

Rational(long x)

- Set this.x to x and this.y to 1

Rational(long x, long y)

- Set gcd (long) to gcd(x, y)

- Set this.x to x/gcd and this.y to y/gcd

Rational add(Rational other)

- Return the sum of this and other rational numbers (recall, a
b
+ c

d
= ad+bc

bd
)

Rational multiply(Rational other)

- Return the product of this and other rational numbers (recall, a
b
× c

d
= ac

bd
)

boolean equals(Object other)

- Return true if this rational number and other have the same numerator and denominator values, and false otherwise

Part I (Warmup Problems) · Problem 4 (Harmonic Number)

L Harmonic.java

Command-line input n (int)

Standard output the nth harmonic number, Hn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
, in rational form

& ~/workspace/percolation

$ javac -d out src/Harmonic.java

$ java Harmonic 10

7381/2520

Part I (Warmup Problems) · Problem 4 (Harmonic Number)

Accept n (int) as command-line argument

Set total (Rational) to the rational number 0

For each int i in [1, n]

- Set term (Rational) to the rational number 1/i

- Increment total by term

Write total

Part II (Percolation) · Introduction

The percolation threshold of a system is a measure of how porous the system needs to be so that it percolates

Goal: write programs to estimate the percolation threshold of a system

We model percolation system as an n × n array of booleans (true =⇒ open site and false =⇒ blocked site)

We use an UF object with n2 + 2 sites and the encode() method to translate sites (0, 0), (0, 1), . . . , (n − 1, n − 1) of the
array to sites 1, 2, . . . , n2 of the UF object

Sites 0 (source) and n2 + 1 (sink) are virtual, ie, not part of the percolation system

Part II (Percolation) · Introduction

A 3× 3 percolation system and its UF representation

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, 0 2, 1 2, 2

0

1 2 3

4 5 6

7 8 9

10

Part II (Percolation) · Problem 5 (Percolation Data Type)

Create a data type called Percolation that supports the following API

² Percolation

Percolation(int n) constructs an n x n percolation system, with all sites blocked

void open(int i, int j) opens site (i, j) if it is not already open

boolean isOpen(int i, int j) returns true if site (i, j) is open, and false otherwise

boolean isFull(int i, int j) returns true if site (i, j) is full, and false otherwise

int numberOfOpenSites() returns the number of open sites

boolean percolates() returns true if this system percolates, and false otherwise

& ~/workspace/percolation

$ javac -d out src/Percolation.java

$ java Percolation data/input10.txt

10 x 10 system:

Open sites = 56

Percolates = true

$ java Percolation data/input10 -no.txt

10 x 10 system:

Open sites = 55

Percolates = false

Part II (Percolation) · Problem 5 (Percolation Data Type)

Instance variables

- Percolation system size, int n

- Percolation system, boolean[][] open

- Number of open sites, int openSites

- Union-find representation of the percolation system, WeightedQuickUnionUF uf

private int encode(int i, int j)

- Return the uf site (1, 2, . . . , n2) corresponding to the percolation system site (i, j)

public Percolation(int n)

- Initialize instance variables

void open(int i, int j)

- If site (i, j) is not open

- Open the site
- Increment openSites by one
- If the site is in the first (or last) row, connect the corresponding uf site with the source (or sink)
- If any of the neighbors to the north, east, west, and south of site (i, j) is open, connect the uf site
corresponding to site (i, j) with the uf site corresponding to that neighbor

Part II (Percolation) · Problem 5 (Percolation Data Type)

boolean isOpen(int i, int j)

- Return whether site (i, j) is open or not

boolean isFull(int i, int j)

- Return whether site (i, j) is full or not — a site is full if it is open and its corresponding uf site is connected to the
source

int numberOfOpenSites()

- Return the number of open sites

boolean percolates()

- Return whether the system percolates or not — a system percolates if the sink is connected to the source

Part II (Percolation) · Back Wash

Using virtual source and sink sites introduces what is called the back wash problem

In the 3× 3 system, consider opening the sites (0, 1), (1, 2),(1, 1), (2, 0), and (2, 2), and in that order; the system
percolates once (2, 2) is opened

0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, 0 2, 1 2, 2

0

1 2 3

4 5 6

7 8 9

10

The site (2, 0) is not full, but the corresponding uf site 7 is connected to the source, so is incorrectly reported as being
full — this is the back wash problem

To solve the back wash problem, create another WeightedQuickUnionUF object

Part II (Percolation) · Problem 6 (Estimation of Percolation Threshold)

Create an immutable data type called PercolationStats that supports the following API

² PercolationStats

PercolationStats(int n, int m) performs m independent experiments on an n x n percolation system

double mean() returns sample mean of percolation threshold

double stddev() returns sample standard deviation of percolation threshold

double confidenceLow() returns low endpoint of 95% confidence interval

double confidenceHigh() returns high endpoint of 95% confidence interval

& ~/workspace/percolation

$ javac -d out src/PercolationStats.java

$ java PercolationStats 100 1000

Percolation threshold for a 100 x 100 system:

Mean = 0.592

Standard deviation = 0.016

Confidence interval = [0.591 , 0.593]

Part II (Percolation) · Problem 6 (Estimation of Percolation Threshold)

Instance variables

- Number of independent experiments, int m

- Percolation thresholds for the m experiments, double[] x

PercolationStats(int n, int m)

- Initialize instance variables

- Repeat the following experiment m times

- Create an n × n percolation system
- Until the system percolates, choose a site (i , j) at random and open it if it is not already open
- Calculate percolation threshold as the fraction of sites opened, and store the value in x[]

double mean()

- Return the mean µ of the values in x[]

double stddev()

- Return the standard deviation σ of the values in x[]

double confidenceLow()

- Return µ− 1.96σ√
m

double confidenceHigh()

- Return µ+ 1.96σ√
m

	Part I (Warmup Problems)
	Problem 1 (Die Data Type)
	Problem 2 (Location Data Type)
	Problem 3 (Rational Data Type)
	Problem 4 (Harmonic Number)

	Part II (Percolation)
	Introduction
	Problem 5 (Percolation Data Type)
	Back Wash
	Problem 6 (Estimation of Percolation Threshold)

