Data Structures and Algorithms in Java

Assignment 1 (Simple Programs) Discussion

C GreetThree.java		
Command-line input	name1 (String), name2 (String), and name3 (String)	
Standard output	a message containing $name_1$, $name_2$, and $name_3$	

>_	_ ~/workspace/simple_programs
\$ \$ H H H	javac -d out src/GreetThree.java java GreetThree Alice Bob Carol i Carol, Bob, and Alice. java GreetThree Dan Eve Fred i Fred, Eve, and Dan.

Accept name₁ (String), name₂ (String), and name₃ (String) as command-line arguments

Set message (String) to the value "Hi name₃, name₂, and name₁."

Write *message* to standard output

G	🕈 ThreeSort.java	
	Command-line input	x (int), y (int), and z (int)
	Standard output	the numbers in sorted order

>_ ~/workspace/sim	ple_programs		
\$ javac -d out \$ java ThreeSor 1 2 3 \$ java ThreeSor 1 2 3	src/ThreeSort.java t 1 3 2 t 3 2 1		

Accept x (int), y (int), and z (int) as command-line arguments

Set *alpha* (int) to the smallest of the three numbers

Set omega (int) to the largest of the three numbers

Set middle (int) to the middle value obtained as an arithmetic combination of x, y, z, alpha, and omega

Write "alpha middle omega" to standard output

G	🕼 GreatCircle.java		
	Command-line input	x_1 (double), y_1 (double), x_2 (double), and y_2 (double)	
	Standard output	great circle distance	

>_ "/workspace/simple.programs	
<pre>\$ javac -d out src/GreatCircle.java \$ javac GreatCircle 48.87 -2.33 37.8 -122.4 8701.387455462233 \$ java GreatCircle 46.36 -71.06 39.90 116.41 10376.503884802196</pre>	

Accept x_1 (double), y_1 (double), x_2 (double), and y_2 (double) as command-line arguments

Set d (double) to the great circle distance value computed as

 $d = 6359.83 \arccos(\sin(x_1)\sin(x_2) + \cos(x_1)\cos(x_2)\cos(y_1 - y_2))$

Write d to standard output

🕼 Stats.java				
Command-line input	a (int) and b (int)			
Standard output	mean, variance, and std. deviation of three random numbers drawn from the interval $[a,b)$			

>_ "/workspace/simple.programs	
<pre>\$ javac -d out src/Stats.java \$ java Stats 0 1 0.5731084550427492 0.04897843881307027 0.22131072909615176 \$ java Stats 50 100 91.3736830296877 25.288830238538182 5.028800079396494</pre>	

Accept a (int) and b (int) as command-line arguments

Set x_1 (double), x_2 (double), and x_3 (double) to random numbers drawn from the interval [a, b)

Set μ (double), var (double), and σ (double) to the mean, variance, and std. deviation values computed as

$$\mu = (x_1 + x_2 + x_3)/3$$
, $var = ((x_1 - \mu)^2 + (x_2 - \mu)^2 + (x_3 - \mu)^2)/3$, and $\sigma = \sqrt{var}$

Write " μ var σ " to standard output

🕼 Triangle.java				
Command-line input	x (int), y (int), and z (int)			
Standard output	$_{\tt true}$ if each input is less than or equal to the sum of the other two, and $_{\tt false}$ otherwise			

>_ ~/workspace/simple.programs	
\$ javac -d out src/Triangle.java \$ java Triangle 3 3 3 true \$ java Triangle 2 4 7 false	

Accept x (int), y (int), and z (int) as command-line arguments

Set expr (boolean) to a boolean expression which is t_{true} if each of x, y, and z is less than or equal to the sum of the other two, and t_{alse} otherwise

Write *expr* to standard output

🕼 Quadratic.java		
Command-line	put $ $ a (double), b (double), and c (double)	
Standard outpu	roots of the quadratic equation $ax^2 + bx + c = 0$	

>_ ~/workspace/simple_programs

\$ javac -d out src/Quadratic.java \$ java Quadratic 0 1 -3 Value of a must not be 0 \$ java Quadratic 1 1 Value of discriminant must not be negative \$ java Quadratic 1 -5 6 3.0 2.0 Accept a (double), b (double), and c (double) as command-line arguments

If a = 0, write the message "Value of a must not be 0" to standard output

Otherwise, set *discriminant* (double) to $b^2 - 2ac$

If discriminant < 0, write the message "Value of discriminant must not be negative"

Otherwise, set $root_1$ (double) to $\frac{-b+\sqrt{discriminant}}{2a}$ and $root_2$ (double) to $\frac{-b-\sqrt{discriminant}}{2a}$

Write "root₁ root₂" to standard output

🗷 Die.java

Standard output simulates the roll of a six-sided die and outputs the pattern on the top face

>_ "/workspace/simple.programs	
\$ javac -d out src/Die.java \$ java Die * * *	
\$ java Die *	

Set value (int) to a random integer from [1, 6]

Write *output* to standard output

🗷 Card.java

Standard output selects a random card from a standard deck of 52 playing cards and outputs the card

>_ `	~/workspace/simple.programs
\$ \$ 3 \$ 4 C	javac -d out src/Card.java java Card of Clubs java Card e of Spades

Set rank (int) to a random integer from [2, 14]

Set *rankStr* (String) to a string corresponding to *rank* — the ranks are 2, 3, ..., *Jack*, *Queen*, *King*, and *Ace* Set *suit* (int) to a random integer from [1,4]

Set suitStr (String) to a string corresponding to suit — the suits are Clubs, Diamonds, Hearts, and Spades

Write "rankStr of suitStr" to standard output

🕼 GCD.java	
Command-line input	p (int) and q (int)
Standard output	greatest common divisor (GCD) of p and q

>_ ~/workspace/simple_programs	
<pre>\$ javac -d out src/GCD.java \$ java GCD 408 1440 24 \$ java GCD 21 22 1</pre>	

Accept p (int) and q (int) as command-line arguments

Repeat as long as $p \mod q \neq 0$

- Exchange p with q and q with $p \mod q$

Write q to standard output

C	🛿 Factorial.java	
	Command-line input	n (int)
	Standard output	<i>n</i> !

>_ ~/workspace/simple.programs	
\$ javac -d out src/Factorial.java \$ java Factorial 0 1 \$ java Factorial 5 120	

Set *result* (long) to 1

For each int $i \in [1, n]$

- Set result to result * i

Write *result* to standard output

🕼 Fibonacci.java	
Command-line input	n (int)
Standard output	the <i>n</i> th number from the Fibonacci sequence $(0, 1, 1, 2, 3, 5, 8, 13, \dots)$

>_ ~/workspace/simple.programs	
<pre>\$ javac -d out src/Fibonacci.java \$ java Fibonacci 10 55 \$ java Fibonacci 15 610</pre>	

Set a (long) to -1, b (long) to 1, and i (int) to 0.

Repeat as long as $i \leq n$

- Exchange a with b and b with a + b
- Increment i by 1

Write b to standard output

Command-line input		
Standard output	<i>true</i> if <i>n</i> is prime, and <i>false</i> otherwise	

>_ "/workspace/simple_programs	
<pre>\$ javac -d out src/PrimalityTest.java \$ java PrimalityTest 31 true \$ java PrimalityTest 42 false</pre>	

Set i (int) to 2

Repeat as long as $i \leq n/i$

- If *i* divides *n*, break
- Increment i by 1

If i > n/i, write *true* to standard output; otherwise, write *false*

🕼 PrimeCounter.java	
Command-line input	n (int)
Standard output	number of primes less than or equal to <i>n</i>

>_	~/workspace/simple_programs
\$	javac -d out src/PrimeCounter.java java PrimeCounter 10
4 \$ 25	java PrimeCounter 100
\$ 16	java PrimeCounter 1000 18

Problem 13 (Counting Primes)

Accept n (int) as command-line argument

Set count (int) to 0

For each int $i \in [2, n]$

- Set j (int) to 2
- Repeat as long as $j \leq i/j$
 - If *j* divides *i*, break
 - Increment j by 1
- If j > i/j, increment *count* by 1

Write *count* to standard output

🖉 PerfectNumbers.java	
Command-line input	n (int)
Standard output	perfect numbers that are less than or equal to <i>n</i>

>_	~/workspace/simple_programs
\$ \$ 6 \$ 6 2 4	javac -d out src/PerfectNumbers.java java PerfectNumbers 10 java PerfectNumbers 1000 8 96

For each int $i \in [2, n]$

- Set total (int) to 0
- For each int $j \in [1, i/2]$
 - If j divides i, increment total by j
- If total = i, write i to standard output

🕝 RamanujanNumbers.java		
Command-line input	n (int)	
Standard output	integers $\leq n$ that can be expressed as the sum of two cubes in two different ways	

>_ ~/workspace/simple.programs		
<pre>\$ javac -d out src/RamanujanNumbers.java \$ java RamanujanNumbers 10000 1729 = 1^3 + 12^3 = 9^3 + 10^3 4104 = 0^2 + 15^2 = 0^2 + 15^2</pre>		
4104 - Z3 ** 103 U = 53 * 15 3 1729 = 1°3 * 12°3 = 9°3 * 10°3 1729 = 2°3 * 16°3 = 9°3 * 10°3		
$13832 = 2^3 + 24^3 = 18^3 + 20^3$ $39312 = 2^3 + 34^3 = 15^3 + 33^3$ $32832 = 4^3 + 32^2 = 18^3 + 30^3$ $20683 = 10^3 + 27^3 = 19^3 + 24^3$		

Problem 15 (Ramanujan Numbers)

Accept n (int) as command-line argument

Set a (int) to 1

Repeat as long as $a^3 \leq n$

- Set b (int) to a+1
- Repeat as long as $a^3+b^3\leq n$
 - Set c (int) to a+1
 - Repeat as long as $c^3 \leq n$
 - Set d (int) to c+1
 - Repeat as long as $c^3 + d^3 \le n$
 - Set x (int) to $a^3 + b^3$ and y (int) to $c^3 + d^3$
 - If x = y, write " $x = a^3 + b^3 = c^3 + d^3$ " to standard output
 - Increment d by 1
 - Increment c by 1
 - Increment b by 1
- Increment *a* by 1