
Introduction to Compiler Construction
Assignment 5 (Type Checking and Code Generation) Discussion

Problem 1 (Operators)

Add support for the following operators:

-= *= /= %= != >= < || ++ --

Modify analyze() and codegen() in JNegateOp and JUnaryPlusOp; the operand can be an int, long, or double

Modify analyze() and codegen() in JPlusOp, JSubtractOp, JMultiplyOp, JDivideOp, and JRemainderOp; the operands can be an ints, longs, or
doubles

Modify analyze() and codegen() in JPlusAssignOp; the operands can be an ints, longs, or doubles

Modify analyze() in JComparisonExpression; the operands can be an ints, longs, or doubles

Problem 1 (Operators)

Implement analyze() and codegen() in JMinusAssignOp, JStarAssignOp, JDivAssignOp, and JRemAssignOp; the operands can be ints, longs, or
doubles

Implement analyze() and codegen() in JNotEqualOp

Implement codegen() in JGreaterEqualOp and JLessThanOp; the operands can be an ints, longs, or doubles

Implement analyze() and codegen() in JLogicalOrOp

Implement analyze() and codegen() in JPostIncrementOp and JPreDecrementOp; the operand must be an int

Problem 1 (Operators)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/Operators.java

$ java Operators 23 3

a : 23

b : 3

a -= b : 20

a *= b : 60

a /= b : 20

a %= b : 2

a != b : true

a >= b : false

a < b : true

a < 0 || b < 0 : false

--a : 1

b++ : 3

Problem 2 (Long and Double Basic Types)

Add support for the long and double basic types

Implement analyze() and codegen() in JLiteralLong and JLiteralDouble

Modify partialCodegen() in JMethodDeclaration

Modify analyze() in JConstructorDeclaration, JMethodDeclaration, and JVariableDeclaration to skip an offset for longs and doubles

Modify codegen() in JReturnStatement

Modify the 1-argument codegen() method and the codegenStore() method in JVariable

Modify 1-argument codegen(), codegenLoadLhsRvalue, and codegenStore() in JArrayExpression

Modify codegen() in JArrayInitializer

Problem 2 (Long and Double Basic Types)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/Factorial.java

$ java Factorial 7

5040

$./bin/j-- codegen/Quadratic.java

$ java Quadratic 1 -5 6

3.0 2.0

Problem 3 (For Statement)

Add support for a for statement

Create a new LocalContext with context as the parent

Analyze the init in the new context

Analyze the condition in the new context and make sure it’s a boolean

Analyze the update in the new context

Analyze the body in the new context

Implement codegen()

Problem 3 (For Statement)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/ForStatement.java

$ java ForStatement 100

5050

$./bin/j-- codege/Stats.java

$ java Stats

Mean = 5.5

Stddev = 2.8722813232690143

Problem 4 (Break Statement)

Add support for a break statement

Create an empty stack in JMember to keep track of the surrounding control-flow statement

public static Stack <JStatement > enclosingStatement = new Stack <JStatement >();

Declare two instance variables in each control-flow statement (do, while, for, and switch): boolean hasBreak and String breakLabel

Each control-flow statement (do, while, for, and switch), during analysis, must push this onto
JMember.enclosingStatement upon entry, and pop it upon exit

Each control-flow statement (do, while, for, and switch), during codegen, must set breakLabel to an appropriate label if
hasBreak is true, and add the label at the appropriate place

Declare an instance variable JStatement enclosingStatement in JBreakStatement, and during analysis, set it to the value at the top of
JMember.enclosingStatement (use peek()); then set the enclosing statement’s hasBreak variable to true

During codegen in JBreakStatement, access the break label via the enclosing statement, and generate an unconditional jump
to that label

Problem 4 (Break Statement)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/BreakStatement.java

$ java BreakStatement 1000

168

Problem 5 (Continue Statement)

Add support for a continue statement

Declare two instance variables in each control-flow statement (do, while, and for): boolean hasContinue and String continueLabel

Each control-flow statement (do, while, and for), during codegen, must set continueLabel to an appropriate label if hasContinue

is true, and add the label at the appropriate place

During analysis in JContinueStatement, set the enclosing statement’s hasContinue variable to true

During codegen in JContinueStatement, access the continue label via the enclosing statement, and generate an unconditional
jump to that label

Problem 5 (Continue Statement)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/ContinueStatement.java

$ java ContinueStatement 100

3.121594652591011

Problem 6 (Switch Statement)

Add support for a switch statement

Code to decide which instruction (TABLESWITCH or LOOKUPSWITCH) to emit:

long tableSpaceCost = 5 + hi - lo;

long tableTimeCost = 3;

long lookupSpaceCost = 3 + 2 * nLabels;

long lookupTimeCost = nLabels;

int opcode = nLabels > 0 && (tableSpaceCost + 3 * tableTimeCost <= lookupSpaceCost + 3 * lookupTimeCost) ?

TABLESWITCH : LOOKUPSWITCH;

Where hi is the highest case label value, lo is the lowest case label value, and nlabels are the total real case labels in the
switch statement.

Analyze the condition and make sure it is an integer

Anayze the case expressions and make sure they are integer literals

Create a new LocalContext with context as the parent, and analyze the statements in each case group in the new context

Problem 6 (Switch Statement)

In codegen() decide which instruction (TABLESWITCH or LOOKUPSWITCH) to emit using the above heuristic

Call the appropriate CLEmitter method to emit that instruction — you will first need to gather all the information that
must be passed as arguments to the method

Generate code for the case group statements, adding labels at the appropriate places

Consult $j/j--/tests/GenTableSwitch.java and $j/j--/tests/GenLookupSwitch.java for more hints on codegen

Problem 6 (Switch Statement)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- codegen/SwitchStatement.java

$ java SwitchStatement

Queen of Hearts

$ java SwitchStatement

Jack of Spades

	Problem 1 (Operators)
	Problem 2 (Long and Double Basic Types)
	Problem 3 (For Statement)
	Problem 4 (Break Statement)
	Problem 5 (Continue Statement)
	Problem 6 (Switch Statement)

