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Compilers · Programming Languages

A programming language specification consists of

- Syntax of tokens

- Syntax of constructs such as classes, methods, statements, and expressions

- Semantics (ie, meaning) of the constructs
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Compilers · Target Architectures

A machine’s instruction set along with its behavior is referred to as its architecture
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An interpreter executes a source language program directly
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Phases of Compilation

A compiler can be broken into a front end and a back end
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Separating the front end from the back end enables code re-use
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Phases of Compilation · Front End

The front end can be decomposed into a sequence of analysis phases
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Phases of Compilation · Back End

The back end can be decomposed into a sequence of synthesis phases
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Phases of Compilation · “Middle” End

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program



Phases of Compilation · “Middle” End

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun
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