
Introduction to Compiler Construction
Compilation: Preliminaries



Outline

1 Compilers

2 Interpreters

3 Phases of Compilation

4 Why Study Compilers?



Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program
(low-level)

Examples (source language): C, Java, j--, iota

Examples (target language): Intel x86 instructions, JVM instructions, Marvin Machine instructions



Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program
(low-level)

Examples (source language): C, Java, j--, iota

Examples (target language): Intel x86 instructions, JVM instructions, Marvin Machine instructions



Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program
(low-level)

Examples (source language): C, Java, j--, iota

Examples (target language): Intel x86 instructions, JVM instructions, Marvin Machine instructions



Compilers

A compiler translates a source language program into a target language program

source
language
program

(high-level)

compiler

target
language
program
(low-level)

Examples (source language): C, Java, j--, iota

Examples (target language): Intel x86 instructions, JVM instructions, Marvin Machine instructions



Compilers · Programming Languages

A programming language specification consists of

- Syntax of tokens

- Syntax of constructs such as classes, methods, statements, and expressions

- Semantics (ie, meaning) of the constructs



Compilers · Programming Languages

A programming language specification consists of

- Syntax of tokens

- Syntax of constructs such as classes, methods, statements, and expressions

- Semantics (ie, meaning) of the constructs



Compilers · Target Architectures

A machine’s instruction set along with its behavior is referred to as its architecture

Examples

- Intel x86

- Java Virtual Machine (JVM)

- Marvin Machine



Compilers · Target Architectures

A machine’s instruction set along with its behavior is referred to as its architecture

Examples

- Intel x86

- Java Virtual Machine (JVM)

- Marvin Machine



Compilers · Target Architectures

A machine’s instruction set along with its behavior is referred to as its architecture

Examples

- Intel x86

- Java Virtual Machine (JVM)

- Marvin Machine



Interpreters

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples: Bash, Python



Interpreters

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples: Bash, Python



Interpreters

An interpreter executes a source language program directly

source
language
program

interpreter results

Examples: Bash, Python



Phases of Compilation

A compiler can be broken into a front end and a back end

source
language
program

front end IR† back end

target
language
program

† Intermediate Representation

Separating the front end from the back end enables code re-use



Phases of Compilation

A compiler can be broken into a front end and a back end

source
language
program

front end IR† back end

target
language
program

† Intermediate Representation

Separating the front end from the back end enables code re-use



Phases of Compilation

A compiler can be broken into a front end and a back end

source
language
program

front end IR† back end

target
language
program

† Intermediate Representation

Separating the front end from the back end enables code re-use



Phases of Compilation · Front End

The front end can be decomposed into a sequence of analysis phases

source
language
program

scanner tokens parser AST† semantics IR

† Abstract Syntax Tree



Phases of Compilation · Front End

The front end can be decomposed into a sequence of analysis phases

source
language
program

scanner tokens parser AST† semantics IR

† Abstract Syntax Tree



Phases of Compilation · Back End

The back end can be decomposed into a sequence of synthesis phases

IR codegen
target

language
instructions

peephole

better
target

language
instructions

object
target

language
program



Phases of Compilation · Back End

The back end can be decomposed into a sequence of synthesis phases

IR codegen
target

language
instructions

peephole

better
target

language
instructions

object
target

language
program



Phases of Compilation · “Middle” End

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program



Phases of Compilation · “Middle” End

A compiler sometimes has an optimizer between the front end and the back end

source
language
program

front end IR optimizer better
IR

back end

target
language
program



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun



Why Study Compilers?

Compilers are larger programs than the ones you have written so far

Compilers make use of things you have learned about earlier

You learn a lot about the source language and the target machine

Compilers are still being written for new languages and targeted to new architectures

There is a good mix of theory and practice

Compiler writing is a case study in software engineering

Compilers are programs and writing programs is fun


	Outline
	Compilers
	Programming Languages
	Target Architectures

	Interpreters
	Phases of Compilation
	Front End
	Back End
	``Middle'' End

	Why Study Compilers?

