
Introduction to Compiler Construction
JVM Code Generation: Preliminaries



Outline

1 Introduction



Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction
Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction
Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction
Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction
Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction
Once the AST has been fully analyzed, all variables and expressions have been typed, any necessary tree rewriting has
been done, and a certain amount of setup needed for code generation has been accomplished

The compiler is now ready to traverse the AST one more time to generate the Java Virtual Machine (JVM) code, ie,
build the class file for the program

For example, consider the following very simple program

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling the program with our j-- compiler

& ~/workspace/j--

$ ./bin/j-- Square.java

produces a class file Square.class

Running the javap program on the class file

& ~/workspace/j--

$ javap -verbose Square

produces the symbolic representation of the file shown in the next slide



Introduction

public class Square extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Square;

const #2 = class #1; // Square

const #3 = Asciz java/lang/Object;

const #4 = class #3; // java/lang/Object

const #5 = Asciz <init >;

const #6 = Asciz ()V;

const #7 = NameAndType #5:#6;// "<init >":()V

const #8 = Method #4.#7; // java/lang/Object."<init >":()V

const #9 = Asciz Code;

const #10 = Asciz square;

const #11 = Asciz (I)I;

{

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public int square(int);

Code:

Stack=2, Locals=2, Args_size =2

0: iload_1

1: iload_1

2: imul

3: ireturn

}



Introduction

public class Square extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Square;

const #2 = class #1; // Square

const #3 = Asciz java/lang/Object;

const #4 = class #3; // java/lang/Object

const #5 = Asciz <init >;

const #6 = Asciz ()V;

const #7 = NameAndType #5:#6;// "<init >":()V

const #8 = Method #4.#7; // java/lang/Object."<init >":()V

const #9 = Asciz Code;

const #10 = Asciz square;

const #11 = Asciz (I)I;

{

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public int square(int);

Code:

Stack=2, Locals=2, Args_size =2

0: iload_1

1: iload_1

2: imul

3: ireturn

}



Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1 );



Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1 );



Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1 );



Introduction

To emit JVM instructions, we firstly create a CLEmitter instance, which is an abstraction of the class file we wish to build,
and then call upon CLEmitter’s methods for generating the necessary headers and instructions

For example, to generate the class header

public class Square extends java.lang.Object

we would invoke the addClass() method on output, an instance of CLEmitter

output.addClass(mods , "Square", "java/lang/Object", null , false);

As another example, the no-argument instruction aload_1 may be generated by

output.addNoArgInstruction(ALOAD_1 );



Introduction

For a more involved example of code generation, consider the Factorial program from before

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

int x = n;

// position 2:

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}



Introduction

For a more involved example of code generation, consider the Factorial program from before

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

int x = n;

// position 2:

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}



Introduction

Running javap on Factorial.class produced by the j-- compiler gives us

public class pass.Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

...

{

static int n;

public pass.Factorial ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int factorial(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method factorial :(I)I

17: imul

18: ireturn

19: nop



Introduction

Running javap on Factorial.class produced by the j-- compiler gives us

public class pass.Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

...

{

static int n;

public pass.Factorial ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int factorial(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method factorial :(I)I

17: imul

18: ireturn

19: nop



Introduction

public static void main(java.lang.String []);

Code:

Stack=3, Locals=2, Args_size =1

0: getstatic #19; //Field n:I

3: istore_1

4: getstatic #25; //Field java/lang/System.out:Ljava/io/PrintStream;

7: new #27; // class java/lang/StringBuilder

10: dup

11: invokespecial #28; // Method java/lang/StringBuilder ."<init >":()V

14: getstatic #19; //Field n:I

17: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

20: ldc #34; // String ! =

22: invokevirtual #37; // Method java/lang/StringBuilder.append:

(Ljava/lang/String ;) Ljava/lang/StringBuilder;

25: iload_1

26: invokestatic #13; // Method factorial :(I)I

29: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

32: invokevirtual #41; // Method java/lang/StringBuilder.toString:

()Ljava/lang/String;

35: invokevirtual #47; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

38: return

public static {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}



Introduction

public static void main(java.lang.String []);

Code:

Stack=3, Locals=2, Args_size =1

0: getstatic #19; //Field n:I

3: istore_1

4: getstatic #25; //Field java/lang/System.out:Ljava/io/PrintStream;

7: new #27; // class java/lang/StringBuilder

10: dup

11: invokespecial #28; // Method java/lang/StringBuilder ."<init >":()V

14: getstatic #19; //Field n:I

17: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

20: ldc #34; // String ! =

22: invokevirtual #37; // Method java/lang/StringBuilder.append:

(Ljava/lang/String ;) Ljava/lang/StringBuilder;

25: iload_1

26: invokestatic #13; // Method factorial :(I)I

29: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

32: invokevirtual #41; // Method java/lang/StringBuilder.toString:

()Ljava/lang/String;

35: invokevirtual #47; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

38: return

public static {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}


	Outline
	Introduction

