
Introduction to Compiler Construction
JVM Code Generation: Classes and their Members

Outline

1 Generating Code for Classes and their Members

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

- invokes codegen() on the JClassDeclaration for generating the code for that class,

- writes out the class to a class file in the destination directory, and

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

- invokes codegen() on the JClassDeclaration for generating the code for that class,

- writes out the class to a class file in the destination directory, and

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

- invokes codegen() on the JClassDeclaration for generating the code for that class,

- writes out the class to a class file in the destination directory, and

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

}

}

Generating Code for Classes and their Members

JCompilationUnit.codegen() drives the generation of code for classes; for each type (ie, class) declaration, it

- invokes codegen() on the JClassDeclaration for generating the code for that class,

- writes out the class to a class file in the destination directory, and

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

}

}

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

JClassDeclaration.codegen() does the following

- It computes the fully-qualified name for the class, taking any package name into account

- It invokes an addClass() on the CLEmitter for adding the class header to the start of the class file

- If there is no explicit constructor with no arguments defined for the class, it invokes the private method
codegenImplicitConstructor() to generate code for the implicit constructor as required by the language

- It generates code for its members, by sending the codegen() message to each of them.

- If there are any static field initializations in the class declaration, then it invokes the private method codegenClassInit()

to generate the code necessary for defining a static block, a block of code that is executed after a class is loaded

Generating Code for Classes and their Members

public void codegen(CLEmitter output) {

// The class header.

String qualifiedName = JAST.compilationUnit.packageName (). isEmpty () ? name : JAST.compilationUnit.packageName () + "/" + name;

output.addClass(mods , qualifiedName , superType.jvmName(), null , false);

// The implicit empty constructor?

if (! hasExplicitConstructor) {

codegenImplicitConstructor(output);

}

// The members.

for (JMember member : classBlock) {

((JAST) member). codegen(output);

}

// Generate a class initialization method.

if (! staticFieldInitializations.isEmpty ()) {

codegenClassInit(output);

}

}

Generating Code for Classes and their Members

public void codegen(CLEmitter output) {

// The class header.

String qualifiedName = JAST.compilationUnit.packageName (). isEmpty () ? name : JAST.compilationUnit.packageName () + "/" + name;

output.addClass(mods , qualifiedName , superType.jvmName(), null , false);

// The implicit empty constructor?

if (! hasExplicitConstructor) {

codegenImplicitConstructor(output);

}

// The members.

for (JMember member : classBlock) {

((JAST) member). codegen(output);

}

// Generate a class initialization method.

if (! staticFieldInitializations.isEmpty ()) {

codegenClassInit(output);

}

}

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL , ((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field : definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL , ((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field : definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

JMethodDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

JConstructorDeclaration.codegen()

public void codegen(CLEmitter output) {

output.addMethod(mods , "<init >", descriptor , null , false);

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL , ((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

// Field initializations

for (JFieldDeclaration field : definingClass.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

// And then the body

body.codegen(output);

output.addNoArgInstruction(RETURN);

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type (). toDescriptor (), false);

}

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type (). toDescriptor (), false);

}

}

Generating Code for Classes and their Members

Since the analysis phase has moved initializations, codegen() for JFieldDeclaration need only generate code for the field
declaration itself

JFieldDeclaration.codegen()

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type (). toDescriptor (), false);

}

}

	Outline
	Generating Code for Classes and their Members

