
Introduction to Compiler Construction
JVM Code Generation: Control, Message, Field Selection, and Array Access Expressions



Outline

1 Generating Code for Control and Logical Expressions

2 Generating Code for Message, Field Selection, and Array Expressions



Generating Code for Control and Logical Expressions

Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions
Almost all control statements in j-- are controlled by some Boolean expression

For example, consider the if-then-else statement below

if (a > b) { c = a; } else { c = b; }

The JVM code produced for the statement is as follows

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things

1. We don’t compute a Boolean value onto the stack and then branch on its value, but make use of the underlying
JVM instruction set, which makes for more compact code

2. We branch to the else-part if the condition is false

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:



Generating Code for Control and Logical Expressions

Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions
Suppose we wish implement the Java do-while statement in j--; for example

do {

a++;

}

while (a < b);

The code we generate might have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

Note that we branch when the condition is true

In generating code for a condition, one needs a method specifying three arguments

1. The CLEmitter instance

2. The target label for the branch

3. A boolean flag onTrue; if onTrue is true then the branch should be made on the condition, and if false, the branch should be
made on the condition’s complement

Thus, every boolean expression must support a version of codegen() with these three arguments; for example, here is that
overloaded codegen() method for JGreaterThanOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

lhs.codegen(output );

rhs.codegen(output );

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE , targetLabel );

}



Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output );

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel );

}

output.addLabel(elseLabel );

if (elsePart != null) {

elsePart.codegen(output );

output.addLabel(endLabel );

}

}



Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output );

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel );

}

output.addLabel(elseLabel );

if (elsePart != null) {

elsePart.codegen(output );

output.addLabel(endLabel );

}

}



Generating Code for Control and Logical Expressions

The three-argument codegen() method is invoked on the condition controlling execution

For example, the codegen() method in JIfStatement makes use of the three-argument codegen() method in producing code for the
if-then-else statement

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output );

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel );

}

output.addLabel(elseLabel );

if (elsePart != null) {

elsePart.codegen(output );

output.addLabel(endLabel );

}

}



Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...



Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...



Generating Code for Control and Logical Expressions

The semantics of Java, and so of j--, requires that the evaluation of expressions such as arg1 && arg2 be short-circuited, ie,
if arg1 is false, then arg2 is not evaluated

The code to be generated depends of whether the branch for the entire expression is to be made on true, or on false

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...



Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false );

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel );

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}



Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false );

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel );

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}



Generating Code for Control and Logical Expressions

For example, the code generated for

if (a > b && b > c) { c = a; } else { c = b; }

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false );

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel );

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}



Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 16

5: iload_2

6: iload_3

7: if_icmple 16

10: iload_3

11: iconst_5

12: if_icmple 16

13: iload_1

14: istore_3

15: goto 18

16: iload_2

17: istore_3

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue );

}



Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 16

5: iload_2

6: iload_3

7: if_icmple 16

10: iload_3

11: iconst_5

12: if_icmple 16

13: iload_1

14: istore_3

15: goto 18

16: iload_2

17: istore_3

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue );

}



Generating Code for Control and Logical Expressions

Notice that our method prevents unnecessary branches to branches; for example, consider the slightly more complicated
condition in

if (a > b && b > c && c > 5) { c = a; } else { c = b; }

The JVM code produced for this targets the same exit on false, for each of the && operations

0: iload_1

1: iload_2

2: if_icmple 16

5: iload_2

6: iload_3

7: if_icmple 16

10: iload_3

11: iconst_5

12: if_icmple 16

13: iload_1

14: istore_3

15: goto 18

16: iload_2

17: istore_3

18: ...

The codegen() method in JLogicalNotOp

public void codegen(CLEmitter output , String targetLabel , boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue );

}



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)

2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type

3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name

4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JMessageExpression proceeds as follows

1. If the message expression involves an instance message, codegen() generates code for the target

2. The message invocation instruction is determined: invokevirtual for instance messages and invokestatic for static
messages

3. The addMemberAccessInstruction() method is invoked to generate the message invocation instruction; this method takes the
following arguments

1. The instruction (invokevirtual or invokestatic)
2. The JVM name for the target’s type
3. The message name
4. The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type of the method is non-void,
then the method addNoArgInstruction() is invoked for generating a pop instruction; this is necessary because executing the
message expression will produce a result on top of the stack, and this result is to be thrown away



Generating Code for Message, Field Selection, and Array Expressions

For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I



Generating Code for Message, Field Selection, and Array Expressions
For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I



Generating Code for Message, Field Selection, and Array Expressions
For example, the code generated for

... = s.square (6);

would be

aload s’ # s’ denotes offset of s

bipush 6

invokevirtual #6; // Method square :(I)I

whereas the code generated for

s.square (6);

would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using the invokestatic instruction; for example the following j-- code

... = Square.square (5);

where int square(int) is a static method in Square, would generate the following JVM code

iconst_5

invokestatic #5; // Method square :(I)I



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)

2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type

3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name

4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

The codegen() method in JFieldSelection works as follows

1. It generates code for its target; if the target is a class, no code is generated

2. The compiler must again treat the special case, a.length where a is an array; the code generated makes use of the
special instruction, arraylength

3. Otherwise, it is treated as a proper field selection; the field selection instruction is determined: getfield for instance
fields and getstatic for static fields

4. The addMemberAccessInstruction() method is invoked with the following arguments

1. The instruction (getfield or getstatic)
2. The JVM name for the target’s type
3. The field name
4. The JVM descriptor for the type of the field, and so the type of the result



Generating Code for Message, Field Selection, and Array Expressions

For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload



Generating Code for Message, Field Selection, and Array Expressions
For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload



Generating Code for Message, Field Selection, and Array Expressions
For example, the following code

... = s.instanceField;

would be translated as

aload s’

getfield instanceField

whereas the following code

... = Square.staticField;

would be translated as

getstatic staticField

Code generation for array access expressions is straightforward; for example, if the variable a references an array object,
and i is an integer, then the following code

... = a[i];

is translated to

aload a’

iload i’

iaload


	Outline
	Generating Code for Control and Logical Expressions
	Generating Code for Message, Field Selection, and Array Expressions

