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LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal



LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule
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LL(1) Parsing · Example (Parse Table for an Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E )

8. F ::= id

LL(1) parse table for the grammar

+ * ( ) id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8
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LL(1) Parsing

Input: parse table table, productions rules, and a sentence w
Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym ← first symbol in w#

3: while true do
4: top ← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#

10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index ← table[Y , sym]
15: if index ̸= err then
16: rule ← rules[index]
17: If Y ::= X1X2 . . .Xn, then stk.push(Xn, . . . ,X2,X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while
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LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either

1. X1X2 . . .Xn
∗⇒ aα, or

2. X1X2 . . .Xn
∗⇒ ϵ, and there is a derivation S#

∗⇒ αYaβ

For this we need two helper functions, first and follow
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1. X1X2 . . .Xn
∗⇒ aα, or

2. X1X2 . . .Xn
∗⇒ ϵ, and there is a derivation S#

∗⇒ αYaβ

For this we need two helper functions, first and follow



First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ
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First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ



First Set · First Set of a Single Symbol

Input: a context-free grammar G = (N,T ,S ,P)
Output: first(X ) for all symbols X ∈ T ∪ N
1: for X ∈ T do
2: first(X )← {X}
3: end for
4: for X ∈ N do
5: first(X )← {}
6: end for
7: if X ::= ϵ ∈ P then
8: Add ϵ to first(X )
9: end if

10: repeat
11: for Y ::= X1X2 . . .Xn ∈ P do
12: Add first(X1X2 . . .Xn) to first(Y )
13: end for
14: until no new symbols are added to any set
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First Set · First Set of a Sequence of Symbols

Input: a context-free grammar G = (N,T ,S ,P) and a sequence of symbols X1X2 . . .Xn

Output: first(X1X2 . . .Xn)
1: F ← first(X1)
2: i ← 2
3: while ϵ ∈ F and i ≤ n do
4: F ← F − ϵ
5: Add first(Xi ) to F
6: i ← i + 1
7: end while
8: return F
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Output: first(X1X2 . . .Xn)
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First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E )

8. F ::= id
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Follow Set

follow(X ) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X ) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X ) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X ) contains follow(Y )
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Follow Set

follow(X ) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X ) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X ) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X ) contains follow(Y )



Follow Set

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X ) for all symbols X ∈ N
1: follow(S)← {#}
2: for X ∈ N do
3: follow(X )← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ϵ} to follow(Xi )
9: If Xi is the last symbol or ϵ ∈ first(Xi+1 . . .Xn), add follow(Y ) to follow(Xi )

10: end for
11: end for
12: until no new symbols are added to any set



Follow Set

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X ) for all symbols X ∈ N
1: follow(S)← {#}
2: for X ∈ N do
3: follow(X )← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ϵ} to follow(Xi )
9: If Xi is the last symbol or ϵ ∈ first(Xi+1 . . .Xn), add follow(Y ) to follow(Xi )

10: end for
11: end for
12: until no new symbols are added to any set



Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E )

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T ) = {(, id}
first(T ′) = {*, ϵ}
first(F ) = {(, id}
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LL(1) Parse Table

Input: a context-free grammar G = (N,T ,S ,P)
Output: LL(1) parse table for G
1: for Y ∈ N do
2: for Y ::= X1X2 . . .Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . .Xn)− {ϵ} do
4: table[Y , a]← i
5: if ϵ ∈ first(X1X2 . . .Xn) then
6: for a ∈ follow(Y ) do
7: table[Y , a]← i
8: end for
9: end if

10: end for
11: end for
12: end for
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LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)
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Removing Left Recursion

Input: a context-free grammar G = (N,T ,S ,P)
Output: G with left recursion eliminated
1: Arbitrarily enumerate the non-terminals of G
2: for i := 1 to n do
3: for j := 1 to i − 1 do
4: Replace pairs of rules of the form Xi ::= Xjα and Xj ::= β1|β2| . . . |βk by the rules Xi ::= β1α|β2α| . . . |βkα
5: Eliminate any direct left recursion
6: end for
7: end for
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