
Introduction to Compiler Construction
Parsing: Top-down LL(1) Algorithm

Outline

1 LL(1) Parsing

2 First Set

3 Follow Set

4 LL(1) Parse Table

5 Removing Left Recursion

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

The first L in the name indicates a left-to-right scan of the input

The second L indicates that the algorithm produces a left-most derivation

The 1 indicates a lookahead of a single token

At the start, the start symbol S is pushed onto a stack

The parser continues by parsing each symbol as it is removed from the top of the stack

- If the symbol is a terminal, it scans a token from the input; if they do not match, an error is raised

- If the symbol is a non-terminal, the input token is used to decide which rule to apply to replace that non-terminal

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing

LL(1) parsing technique is table-driven, with a unique parse table produced for each grammar

The parse table has a row for each non-terminal and a column for each terminal, including a special terminator # to
mark the end of the sentence

The parser consults this table, given the non-terminal on top of the stack and the next input token to determine which
rule to use in replacing the non-terminal

No table entry may contain more than one rule

LL(1) Parsing · Example (Parse Table for an Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing · Example (Parse Table for an Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing · Example (Parse Table for an Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

LL(1) parse table for the grammar

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing

Input: parse table table, productions rules, and a sentence w
Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym ← first symbol in w#

3: while true do
4: top ← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#

10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index ← table[Y , sym]
15: if index ̸= err then
16: rule ← rules[index]
17: If Y ::= X1X2 . . .Xn, then stk.push(Xn, . . . ,X2,X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while

LL(1) Parsing

Input: parse table table, productions rules, and a sentence w
Output: a left-most derivation for w
1: stk ← Stack(#, S)
2: sym ← first symbol in w#

3: while true do
4: top ← stk.pop()
5: if top = sym = # then
6: Halt successfully
7: else if top is a terminal then
8: if top = sym then
9: Advance sym to be the next symbol in w#

10: else
11: Halt with an error: sym found where top was expected
12: end if
13: else if top is a non-terminal Y then
14: index ← table[Y , sym]
15: if index ̸= err then
16: rule ← rules[index]
17: If Y ::= X1X2 . . .Xn, then stk.push(Xn, . . . ,X2,X1)
18: else
19: Halt with an error: no rule to follow
20: end if
21: end if
22: end while

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

#E ′T ′F id# 8

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

#E ′T ′F id# 8

#E ′T ′
id id#

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

#E ′T ′F id# 8

#E ′T ′
id id#

#E ′T ′
6

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

#E ′T ′F id# 8

#E ′T ′
id id#

#E ′T ′
6

#E ′
3

LL(1) Parsing · Example (Parsing id+id*id)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

Stack Input Output

#E id+id*id# 1

#E ′T id+id*id# 4

#E ′T ′F id+id*id# 8

#E ′T ′
id id+id*id#

#E ′T ′
+id*id# 6

#E ′
+id*id# 2

#E ′T + +id*id#

#E ′T id*id# 4

#E ′T ′F id*id# 8

#E ′T ′
id id*id#

#E ′T ′
*id# 5

#E ′T ′F * *id#

#E ′T ′F id# 8

#E ′T ′
id id#

#E ′T ′
6

#E ′
3

✓

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either

1. X1X2 . . .Xn
∗⇒ aα, or

2. X1X2 . . .Xn
∗⇒ ϵ, and there is a derivation S#

∗⇒ αYaβ

For this we need two helper functions, first and follow

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either

1. X1X2 . . .Xn
∗⇒ aα, or

2. X1X2 . . .Xn
∗⇒ ϵ, and there is a derivation S#

∗⇒ αYaβ

For this we need two helper functions, first and follow

LL(1) Parsing

Assuming both α and β are (possibly empty) strings of terminals and non-terminals, table[Y , a] = i , where i is the
number of the rule Y ::= X1X2 . . .Xn, if either

1. X1X2 . . .Xn
∗⇒ aα, or

2. X1X2 . . .Xn
∗⇒ ϵ, and there is a derivation S#

∗⇒ αYaβ

For this we need two helper functions, first and follow

First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ

First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ

First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ

First Set

first(X1X2 . . .Xn) is the set of all terminals that can start strings derivable from X1X2 . . .Xn

Formally, first(X1X2 . . .Xn) = {a|X1X2 . . .Xn
∗⇒ aα, a ∈ T}

If X1X2 . . .Xn
∗⇒ ϵ, then we say that first(X1X2 . . .Xn) includes ϵ

First Set · First Set of a Single Symbol

Input: a context-free grammar G = (N,T ,S ,P)
Output: first(X) for all symbols X ∈ T ∪ N
1: for X ∈ T do
2: first(X)← {X}
3: end for
4: for X ∈ N do
5: first(X)← {}
6: end for
7: if X ::= ϵ ∈ P then
8: Add ϵ to first(X)
9: end if

10: repeat
11: for Y ::= X1X2 . . .Xn ∈ P do
12: Add first(X1X2 . . .Xn) to first(Y)
13: end for
14: until no new symbols are added to any set

First Set · First Set of a Single Symbol

Input: a context-free grammar G = (N,T ,S ,P)
Output: first(X) for all symbols X ∈ T ∪ N
1: for X ∈ T do
2: first(X)← {X}
3: end for
4: for X ∈ N do
5: first(X)← {}
6: end for
7: if X ::= ϵ ∈ P then
8: Add ϵ to first(X)
9: end if

10: repeat
11: for Y ::= X1X2 . . .Xn ∈ P do
12: Add first(X1X2 . . .Xn) to first(Y)
13: end for
14: until no new symbols are added to any set

First Set · First Set of a Sequence of Symbols

Input: a context-free grammar G = (N,T ,S ,P) and a sequence of symbols X1X2 . . .Xn

Output: first(X1X2 . . .Xn)
1: F ← first(X1)
2: i ← 2
3: while ϵ ∈ F and i ≤ n do
4: F ← F − ϵ
5: Add first(Xi) to F
6: i ← i + 1
7: end while
8: return F

First Set · First Set of a Sequence of Symbols

Input: a context-free grammar G = (N,T ,S ,P) and a sequence of symbols X1X2 . . .Xn

Output: first(X1X2 . . .Xn)
1: F ← first(X1)
2: i ← 2
3: while ϵ ∈ F and i ≤ n do
4: F ← F − ϵ
5: Add first(Xi) to F
6: i ← i + 1
7: end while
8: return F

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) =
first(E ′) =
first(T) =
first(T ′) =
first(F) =

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {}
first(E ′) = {}
first(T) = {}
first(T ′) = {}
first(F) = {}

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {}
first(E ′) = {ϵ}
first(T) = {}
first(T ′) = {ϵ}
first(F) = {}

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {}
first(E ′) = {ϵ, +}
first(T) = {}
first(T ′) = {ϵ, *}
first(F) = {(, id}

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

First Set · Example (First Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

Follow Set

follow(X) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X) contains follow(Y)

Follow Set

follow(X) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X) contains follow(Y)

Follow Set

follow(X) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X) contains follow(Y)

Follow Set

follow(X) is the set of all terminals that can start strings derivable from what can follow X in a derivation

Formally, follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }

Alternate definition

1. follow(S) contains #, ie, the terminator follows the start symbol

2. If there is a rule Y ::= αXβ in P, follow(X) contains first(β)− {ϵ}
3. If there is a rule Y ::= αXβ in P and either β = ϵ or first(β) contains ϵ, follow(X) contains follow(Y)

Follow Set

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X) for all symbols X ∈ N
1: follow(S)← {#}
2: for X ∈ N do
3: follow(X)← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ϵ} to follow(Xi)
9: If Xi is the last symbol or ϵ ∈ first(Xi+1 . . .Xn), add follow(Y) to follow(Xi)

10: end for
11: end for
12: until no new symbols are added to any set

Follow Set

Input: a context-free grammar G = (N,T ,S ,P)
Output: follow(X) for all symbols X ∈ N
1: follow(S)← {#}
2: for X ∈ N do
3: follow(X)← {}
4: end for
5: repeat
6: for Y ::= X1X2 . . .Xn ∈ P do
7: for Xi ∈ X1X2 . . .Xn do
8: Add first(Xi+1Xi+2 . . .Xn)− {ϵ} to follow(Xi)
9: If Xi is the last symbol or ϵ ∈ first(Xi+1 . . .Xn), add follow(Y) to follow(Xi)

10: end for
11: end for
12: until no new symbols are added to any set

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

follow(E) =
follow(E ′) =
follow(T) =
follow(T ′) =
follow(F) =

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

follow(E) = {#}
follow(E ′) = {}
follow(T) = {}
follow(T ′) = {}
follow(F) = {}

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {#}
follow(T) = {+, #}
follow(T ′) = {+, #}
follow(F) = {*, +, #}

Follow Set · Example (Follow Sets for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {+, ϵ}
first(T) = {(, id}
first(T ′) = {*, ϵ}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

LL(1) Parse Table

Input: a context-free grammar G = (N,T ,S ,P)
Output: LL(1) parse table for G
1: for Y ∈ N do
2: for Y ::= X1X2 . . .Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . .Xn)− {ϵ} do
4: table[Y , a]← i
5: if ϵ ∈ first(X1X2 . . .Xn) then
6: for a ∈ follow(Y) do
7: table[Y , a]← i
8: end for
9: end if

10: end for
11: end for
12: end for

LL(1) Parse Table

Input: a context-free grammar G = (N,T ,S ,P)
Output: LL(1) parse table for G
1: for Y ∈ N do
2: for Y ::= X1X2 . . .Xn ∈ P with index i do
3: for a ∈ first(X1X2 . . .Xn)− {ϵ} do
4: table[Y , a]← i
5: if ϵ ∈ first(X1X2 . . .Xn) then
6: for a ∈ follow(Y) do
7: table[Y , a]← i
8: end for
9: end if

10: end for
11: end for
12: end for

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E

E ′

T

T ′

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′

T

T ′

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2

T

T ′

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T

T ′

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 5

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F

LL(1) Parse Table · Example (Parser Table for the Arithmetic Expression Grammar)

1. E ::= T E ′

2. E ′ ::= + T E ′

3. E ′ ::= ϵ
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ϵ
7. F ::= (E)

8. F ::= id

first(E) = {(, id}
first(E ′) = {ϵ, +}
first(T) = {(, id}
first(T ′) = {ϵ, *}
first(F) = {(, id}

follow(E) = {), #}
follow(E ′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {*, +,), #}

+ * () id #

E 1 1

E ′ 2 3 3

T 4 4

T ′ 6 5 6 6

F 7 8

LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)

LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)

LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)

LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)

LL(1) Parse Table

We say a grammar is LL(1) if the parse table has no conflicts, ie, no entries with more than one rule

If a grammar is LL(1), then it is unambiguous

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1, which would mean a parse table having columns
for each combination of k symbols

Not all context-free grammars are LL(1), but for many that are not, we can define equivalent grammars that are LL(1)

Removing Left Recursion

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Equivalent grammar without the direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ϵ

Removing Left Recursion

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Equivalent grammar without the direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ϵ

Removing Left Recursion

One type of grammar that is not LL(1) is a grammar having a rule with direct left recursion

Y ::= Y α
Y ::= β

Equivalent grammar without the direct left recursion

Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ϵ

Removing Left Recursion · Example

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ϵ
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ϵ
F ::= (E)

F ::= id

Removing Left Recursion · Example

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ϵ
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ϵ
F ::= (E)

F ::= id

Removing Left Recursion · Example

E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)

F ::= id

Equivalent LL(1) grammar

E ::= T E ′

E ′ ::= + T E ′

E ′ ::= ϵ
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ϵ
F ::= (E)

F ::= id

Removing Left Recursion

Input: a context-free grammar G = (N,T ,S ,P)
Output: G with left recursion eliminated
1: Arbitrarily enumerate the non-terminals of G
2: for i := 1 to n do
3: for j := 1 to i − 1 do
4: Replace pairs of rules of the form Xi ::= Xjα and Xj ::= β1|β2| . . . |βk by the rules Xi ::= β1α|β2α| . . . |βkα
5: Eliminate any direct left recursion
6: end for
7: end for

Removing Left Recursion

Input: a context-free grammar G = (N,T ,S ,P)
Output: G with left recursion eliminated
1: Arbitrarily enumerate the non-terminals of G
2: for i := 1 to n do
3: for j := 1 to i − 1 do
4: Replace pairs of rules of the form Xi ::= Xjα and Xj ::= β1|β2| . . . |βk by the rules Xi ::= β1α|β2α| . . . |βkα
5: Eliminate any direct left recursion
6: end for
7: end for

	Outline
	LL(1) Parsing
	Example (Parse Table for an Arithmetic Expression Grammar)

	LL(1) Parsing
	Example (Parsing id+id*id)

	LL(1) Parsing
	First Set
	First Set of a Single Symbol
	First Set of a Sequence of Symbols
	Example (First Sets for the Arithmetic Expression Grammar)

	Follow Set
	Example (Follow Sets for the Arithmetic Expression Grammar)

	LL(1) Parse Table
	Example (Parser Table for the Arithmetic Expression Grammar)

	LL(1) Parse Table
	Removing Left Recursion
	Example

	Removing Left Recursion

