
Introduction to Compiler Construction
Parsing: Bottom-up LR(1) Algorithm

Outline

1 Bottom-up Parsing

2 LR(1) Parsing

3 LR(1) Parse Tables

4 Conflicts

Bottom-up Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # ✓

Bottom-up Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # ✓

Bottom-up Parsing

The bottom-up parser proceeds via a sequence of shifts and reductions, until the start symbol is on top of the stack and
the input is just the terminator symbol #

Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

Stack Input Action

id+id*id# shift

id +id*id# reduce 6

F +id*id# reduce 4

T +id*id# reduce 2

E +id*id# shift

E + id*id# shift

E +id *id# reduce 6

E +F *id# reduce 4

E +T *id# shift

E +T * id# shift

E +T *id # reduce 6

E +T *F # reduce 3

E +T # reduce 1

E # ✓

Bottom-up Parsing

The following questions arise

- How does the parser know when to shift and when to reduce?

- When reducing, how many symbols on top of the stack play a role in the reduction?

- Also, when reducing, by which rule does the parser make the reduction with?

Bottom-up Parsing

The following questions arise

- How does the parser know when to shift and when to reduce?

- When reducing, how many symbols on top of the stack play a role in the reduction?

- Also, when reducing, by which rule does the parser make the reduction with?

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

Bottom-up Parsing

The stack configuration combined with the un-scanned input stream represents a sentential form in a right-most
derivation of the input

We call the sequence of symbols on top of the stack that are reduced to a single non-terminal at each reduction step
the handle

Formally, in a right-most derivation, S
∗⇒ αYw ⇒ αβw

∗⇒ uw , a handle is a rule Y ::= β and a position in αβw where
β may be replaced by Y

When a handle appears on top of the stack

Stack Input

αβ w

we reduce that handle (β to Y in this case)

If β is the sequence X1,X2, . . . ,Xn, then we call any subsequence, X1,X2, . . . ,Xi , for i ≤ n a viable prefix

If there is not a handle on top of the stack and shifting an input token onto the stack results in a viable prefix, a shift is
called for

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are terminal or non-terminal symbols, and akak+1 . . . an are the un-scanned input symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are terminal or non-terminal symbols, and akak+1 . . . an are the un-scanned input symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are terminal or non-terminal symbols, and akak+1 . . . an are the un-scanned input symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing

The LR(1) parsing algorithm is a state machine with a pushdown stack, and is driven by two tables: Action and Goto

A configuration of the parser is a pair, consisting of the state of the stack and the state of the input

Stack Input

s0X1s1X2s2 . . .Xmsm akak+1 . . . an

where the si are states, the Xi are terminal or non-terminal symbols, and akak+1 . . . an are the un-scanned input symbols

The configuration represents a right sentential form in a right-most derivation of the sequence X1X2 . . .Xmakak+1 . . . an

LR(1) Parsing · Example (Action and Goto Tables)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing · Example (Action and Goto Tables)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing · Example (Action and Goto Tables)

Input: Action and Goto tables and a sentence w
Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
2: repeat
3: If Action[sm, ak] = ssi , the parser executes a shift (the s stands for “shift”) and goes into state si

Stack Input

s0X1s1X2s2 . . . Xmsmak si ak+1 . . . an#

4: Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where i is the index of the rule Y ::= XjXj+1 . . .Xm,
the parser replaces the symbols and states Xj sjXj+1sj+1 . . .Xmsm by Ys, where s = Goto[sj−1,Y], and outputs i

Stack Input

s0X1s1X2s2 . . . Xj−1sj−1Ys ak+1 . . . an#

5: Otherwise, if Action[sm, ak] = accept, the parser halts successfully
6: Otherwise, if Action[sm, ak] = error, the parser raises an error
7: until either the sentence is parsed or an error is raised

LR(1) Parsing · Example (Action and Goto Tables)

Input: Action and Goto tables and a sentence w
Output: a right-most derivation in reverse
1: Initially, the parser has the configuration,

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
2: repeat
3: If Action[sm, ak] = ssi , the parser executes a shift (the s stands for “shift”) and goes into state si

Stack Input

s0X1s1X2s2 . . . Xmsmak si ak+1 . . . an#

4: Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where i is the index of the rule Y ::= XjXj+1 . . .Xm,
the parser replaces the symbols and states Xj sjXj+1sj+1 . . .Xmsm by Ys, where s = Goto[sj−1,Y], and outputs i

Stack Input

s0X1s1X2s2 . . . Xj−1sj−1Ys ak+1 . . . an#

5: Otherwise, if Action[sm, ak] = accept, the parser halts successfully
6: Otherwise, if Action[sm, ak] = error, the parser raises an error
7: until either the sentence is parsed or an error is raised

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

0E1+6T13 # r1

LR(1) Parsing · Example (parsing id+id*id)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Stack Input Action

0 id+id*id# s5

0id5 +id*id# r6

0F3 +id*id# r4

0T2 +id*id# r2

0E1 +id*id# s6

0E1+6 id*id# s5

0E1+6id5 *id# r6

0E1+6F3 *id# r4

0E1+6T13 *id# s7

0E1+6T13*7 id# s5

0E1+6T13*7id5 # r6

0E1+6T13*7F14 # r3

0E1+6T13 # r1

0E1 # ✓

LR(1) Parse Tables · LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parse Tables · LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parse Tables · LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parse Tables · LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parse Tables · LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for recognizing the possible
handles for a parse in G

The DFA is constructed from the LR(1) canonical collection, a collection of sets of items (representing potential
handles) of the form

[Y ::= α · β, a]

where Y ::= αβ is a rule in P, α and β are (possibly empty) strings of symbols, and a is a lookahead symbol

The · is a position marker that marks the top of the stack, indicating that we have parsed the α and still have the β
ahead of us in satisfying the Y

The lookahead symbol a is a token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence

LR(1) Parse Tables · LR(1) Canonical Collection

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y

[Y ::= α β ·, a]

LR(1) Parse Tables · LR(1) Canonical Collection

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y

[Y ::= α β ·, a]

LR(1) Parse Tables · LR(1) Canonical Collection

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y

[Y ::= α β ·, a]

LR(1) Parse Tables · LR(1) Canonical Collection

The following item is called a possibility

[Y ::= · α β, a]

The following item indicates that α has been parsed (and so is on the stack) but that there is still β to parse from the
input

[Y ::= α · β, a]

The following item indicates that the parser has successfully parsed αβ in a context where Y a would be valid, and that
the αβ can be reduced to a Y

[Y ::= α β ·, a]

LR(1) Parse Tables · LR(1) Canonical Collection

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parse Tables · LR(1) Canonical Collection

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parse Tables · LR(1) Canonical Collection

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parse Tables · LR(1) Canonical Collection

The states in the DFA for recognizing viable prefixes and handles are constructed from items

We first augment our grammar G with an additional start symbol S ′ and an additional rule so as to yield an equivalent
grammar G ′

S ′ ::= S

Example (augmented arithmetic expression grammar)

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

LR(1) Parse Tables · LR(1) Canonical Collection

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parse Tables · LR(1) Canonical Collection

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parse Tables · LR(1) Canonical Collection

The initial set, called kernel, representing the initial state in the DFA, will contain the LR(1) item

{[S ′ ::= · S, #]}

which says that parsing an S ′ means parsing an S from the input, after which point the next (and last) remaining token
is the terminator #

The kernel may imply additional items, which are computed as the closure of the set

LR(1) Parse Tables · Closure of an Itemset

Input: itemset s
Output: closure(s)
1: C ← Set(s)
2: repeat
3: If C contains an item of the form

[Y ::= α · X β, a],

then add the item

[X ::= · γ, b]

to C for every rule X ::= γ in P and for every token b in first(βa)
4: until no new items may be added
5: return C

LR(1) Parse Tables · Closure of an Itemset

Input: itemset s
Output: closure(s)
1: C ← Set(s)
2: repeat
3: If C contains an item of the form

[Y ::= α · X β, a],

then add the item

[X ::= · γ, b]

to C for every rule X ::= γ in P and for every token b in first(βa)
4: until no new items may be added
5: return C

LR(1) Parse Tables · Closure of an Itemset

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parse Tables · Closure of an Itemset

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parse Tables · Closure of an Itemset

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

closure({[E ′ ::= ·E , #]}) yields

{[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

which represents the initial state s0 in the LR(1) canonical collection

LR(1) Parse Tables · goto(s,X)

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}

Informally, to compute goto(s,X), take all items from s with a · before the X and move it after the X , and take the
closure of that

LR(1) Parse Tables · goto(s,X)

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}

Informally, to compute goto(s,X), take all items from s with a · before the X and move it after the X , and take the
closure of that

LR(1) Parse Tables · goto(s,X)

For any item set s, and any symbol X ∈ (T ∪ N)

goto(s,X) = closure(r),

where r = {[Y ::= αX · β, a]|[Y ::= α · Xβ, a]}

Informally, to compute goto(s,X), take all items from s with a · before the X and move it after the X , and take the
closure of that

LR(1) Parse Tables · goto(s,X)

Input: a state s, and a symbol X ∈ T ∪ N
Output: the state goto(s,X)
1: r ← Set()
2: for [Y ::= α · Xβ, a] ∈ s do
3: r .add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parse Tables · goto(s,X)

Input: a state s, and a symbol X ∈ T ∪ N
Output: the state goto(s,X)
1: r ← Set()
2: for [Y ::= α · Xβ, a] ∈ s do
3: r .add([Y ::= αX · β, a])
4: end for
5: return closure(r)

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · goto(s,X)

Example

0. E ′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)

6. F ::= id

s0 = {[E ′ ::= · E , #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1 = {[E ′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s0, T) = s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s0, F) = s3 = {[T ::= F ·, +/*/#]}

goto(s0, () = s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5 = {[F ::= id ·, +/*/#]}

LR(1) Parse Tables · LR(1) Canonical Collection

Input: a context-free grammar G = (N,T ,S ,P)
Output: the canonical LR(1) collection of states C = {s0, s1, . . . , sn}
1: Define an augmented grammar G ′ which is G with the added non-terminal S ′ and added production rule S ′ ::= S
2: s0 ← closure({[S ′ ::= ·S, #]})
3: C ← Set(s0)
4: repeat
5: for s ∈ C do
6: for X ∈ T ∪ N do
7: if goto(s,X) ̸= ∅ and goto(s,X) /∈ C then
8: C.add(goto(s,X))
9: end if

10: end for
11: end for
12: until no new states are added to C

LR(1) Parse Tables · LR(1) Canonical Collection

Input: a context-free grammar G = (N,T ,S ,P)
Output: the canonical LR(1) collection of states C = {s0, s1, . . . , sn}
1: Define an augmented grammar G ′ which is G with the added non-terminal S ′ and added production rule S ′ ::= S
2: s0 ← closure({[S ′ ::= ·S, #]})
3: C ← Set(s0)
4: repeat
5: for s ∈ C do
6: for X ∈ T ∪ N do
7: if goto(s,X) ̸= ∅ and goto(s,X) /∈ C then
8: C.add(goto(s,X))
9: end if

10: end for
11: end for
12: until no new states are added to C

LR(1) Parse Tables · LR(1) Canonical Collection

Example (the LR(1) canonical collection for the arithmetic expression grammar)

s0 = {[E′ ::= ·E, #], [E ::= ·E+T, +/#], [E ::= ·T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]}

goto(s0, E) = {[E′ ::= E·, #], [E ::= E · +T, +/#]} = s1
goto(s0, T) = {[E ::= T·, +/#], [T ::= T · *F, +/*/#], } = s2
goto(s0, F) = {[T ::= F·, +/*/#]} = s3
goto(s0, () = {[F ::= (· E), +/*/#], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s4
goto(s0, id) = {[F ::= id·, +/*/#]} = s5

goto(s1, +) = {[E ::= E+ · T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s6

goto(s2, *) = {[T ::= T* · F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s7

goto(s4, E) = {[F ::= (E ·), +/*/#], [E ::= E · +T, +/)]} = s8
goto(s4, T) = {[E ::= T·, +/)], [T ::= T · *F, +/*/)]} = s9
goto(s4, F) = {[T ::= F·, +/*/)]} = s10
goto(s4, () = {[F ::= (· E), +/*/)], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s11
goto(s4, id) = {[F ::= id·, +/*/)]} = s12

goto(s6, T) = {[E ::= E+T·, +/#], [T ::= T · *F, +/*/#]} = s13
goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

goto(s7, F) = {[T ::= T*F·, +/*/#]} = s14
goto(s7, () = s4

goto(s7, id) = s5

LR(1) Parse Tables · LR(1) Canonical Collection

Example (the LR(1) canonical collection for the arithmetic expression grammar)

s0 = {[E′ ::= ·E, #], [E ::= ·E+T, +/#], [E ::= ·T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]}

goto(s0, E) = {[E′ ::= E·, #], [E ::= E · +T, +/#]} = s1
goto(s0, T) = {[E ::= T·, +/#], [T ::= T · *F, +/*/#], } = s2
goto(s0, F) = {[T ::= F·, +/*/#]} = s3
goto(s0, () = {[F ::= (· E), +/*/#], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s4
goto(s0, id) = {[F ::= id·, +/*/#]} = s5

goto(s1, +) = {[E ::= E+ · T, +/#], [T ::= ·T*F, +/*/#], [T ::= ·F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s6

goto(s2, *) = {[T ::= T* · F, +/*/#], [F ::= ·(E), +/*/#], [F ::= ·id, +/*/#]} = s7

goto(s4, E) = {[F ::= (E ·), +/*/#], [E ::= E · +T, +/)]} = s8
goto(s4, T) = {[E ::= T·, +/)], [T ::= T · *F, +/*/)]} = s9
goto(s4, F) = {[T ::= F·, +/*/)]} = s10
goto(s4, () = {[F ::= (· E), +/*/)], [E ::= ·E+T, +/)], [E ::= ·T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s11
goto(s4, id) = {[F ::= id·, +/*/)]} = s12

goto(s6, T) = {[E ::= E+T·, +/#], [T ::= T · *F, +/*/#]} = s13
goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

goto(s7, F) = {[T ::= T*F·, +/*/#]} = s14
goto(s7, () = s4

goto(s7, id) = s5

LR(1) Parse Tables · LR(1) Canonical Collection

goto(s8,)) = {[F ::= (E)·, +/*/#]} = s15
goto(s8, +) = {[E ::= E+ · T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s16

goto(s9, *) = {[T ::= T* · F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s17

goto(s11, E) = {[F ::= (E ·), +/*/)], [E ::= E · +T, +/)]} = s18
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

goto(s13, *) = s7

goto(s16, T) = {[E ::= E+T·, +/)][T ::= T · *F, +/*/)]} = s19
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12

goto(s17, F) = {[T ::= T*F·, +/*/)]} = s20
goto(s17, () = s11
goto(s17, id) = s12

goto(s18, () = {[F ::= (E)·, +/*/)], } = s21
goto(s18, +) = s16

goto(s19, *) = s17

LR(1) Parse Tables · LR(1) Canonical Collection

goto(s8,)) = {[F ::= (E)·, +/*/#]} = s15
goto(s8, +) = {[E ::= E+ · T, +/)], [T ::= ·T*F, +/*/)], [T ::= ·F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s16

goto(s9, *) = {[T ::= T* · F, +/*/)], [F ::= ·(E), +/*/)], [F ::= ·id, +/*/)]} = s17

goto(s11, E) = {[F ::= (E ·), +/*/)], [E ::= E · +T, +/)]} = s18
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

goto(s13, *) = s7

goto(s16, T) = {[E ::= E+T·, +/)][T ::= T · *F, +/*/)]} = s19
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12

goto(s17, F) = {[T ::= T*F·, +/*/)]} = s20
goto(s17, () = s11
goto(s17, id) = s12

goto(s18, () = {[F ::= (E)·, +/*/)], } = s21
goto(s18, +) = s16

goto(s19, *) = s17

LR(1) Parse Tables

Input: a context-free grammar G = (N,T ,S ,P)
Output: the LR(1) tables Action and Goto

1. Compute the LR(1) canonical collection C = {s0, s1, . . . , sn}
2. The Action table is constructed as follows:

a For each transition, goto(si , a) = sj , where a is a terminal, set Action[i , a] = sj

b If the item set sk contains the item [S ′ ::= S ·, #], set Action[k, #] = accept

c For all item sets si , if si contains an item of the form [Y ::= α·, a], set Action[i , a] = rp, where p is the
number of the rule Y ::= α

d All undefined entries in Action are set to error

3. The Goto table is constructed as follows:

a For each transition, goto(si , Y) = sj , where Y is a non-terminal, set Goto[i , Y] = j

b All undefined entries in Goto are set to error

LR(1) Parse Tables

Input: a context-free grammar G = (N,T ,S ,P)
Output: the LR(1) tables Action and Goto

1. Compute the LR(1) canonical collection C = {s0, s1, . . . , sn}
2. The Action table is constructed as follows:

a For each transition, goto(si , a) = sj , where a is a terminal, set Action[i , a] = sj

b If the item set sk contains the item [S ′ ::= S ·, #], set Action[k, #] = accept

c For all item sets si , if si contains an item of the form [Y ::= α·, a], set Action[i , a] = rp, where p is the
number of the rule Y ::= α

d All undefined entries in Action are set to error

3. The Goto table is constructed as follows:

a For each transition, goto(si , Y) = sj , where Y is a non-terminal, set Goto[i , Y] = j

b All undefined entries in Goto are set to error

LR(1) Parse Tables

Example (Action and Goto tables for the arithmetic expression grammar)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

LR(1) Parse Tables

Example (Action and Goto tables for the arithmetic expression grammar)

Action Goto

+ * () id # E T F

0 s4 s5 1 2 3

1 s6 ✓

2 r2 s7 r2

3 r4 r4 r4

4 s11 s12 8 9 10

5 r6 r6 r6

6 s4 s5 13 3

7 s4 s5 14

8 s16 s15

9 r2 s17 r2

10 r4 r4 r4

11 s11 s12 18 9 10

12 r6 r6 r6

13 r1 s7 r1

14 r3 r3 r3

15 r5 r5 r5

16 s11 s12 19 10

17 s11 s12 20

18 s16 s21

19 r1 s17 r1

20 r3 r3 r3

21 r5 r5 r5

Conflicts

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

Conflicts

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

Conflicts

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

Conflicts

There are two different kinds of conflicts possible for an entry in the Action table

The shift-reduce conflict can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

Example (the dangling else problem)

S ::= if (E) S
S ::= if (E) S else S

Most parser generators that are based on LR grammars favor a shift of the else over a reduce of the if (E) S to an S

Conflicts

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

Conflicts

The reduce-reduce conflict can happen when we have a state containing two items of the form

[X ::= α ·, a]
[Y ::= β ·, a]

	Outline
	Bottom-up Parsing
	LR(1) Parsing
	Example (Action and Goto Tables)
	Example (parsing id+id*id)

	LR(1) Parse Tables
	LR(1) Canonical Collection
	Closure of an Itemset
	goto(s, X)
	LR(1) Canonical Collection

	LR(1) Parse Tables
	Conflicts

