
Introduction to Compiler Construction
Assignment 3 (Parsing) Discussion

Problem 1 (Operators)

Add support for the following operators

-= *= /= %= != >= < || ++ --

Modify assignmentExpression() in Parser to parse the -=, *=, /=, and %= operators, using JMinusAssignOp, JStarAssignOp, JDivAssignOp, and
JRemAssignOp in JAssignment as the corresponding AST representations

Modify equalityExpression() in Parser to parse the != operator, using JNotEqualOp in JBooleanBinaryExpression as the corresponding AST
representation

Modify relationalExpression() in Parser to parse the >= and < operators, using JGreaterEqualOp and JLessThanOp in JComparisonExpression as
the corresponding AST representations

Add conditionalOrExpression() in Parser to parse the || operator, using JLogicalOrOp in JBooleanBinaryExpression as the corresponding AST
representation; modify conditionalExpression() in Parser to now call conditionalOrExpression()

Modify unaryExpression() in Parser to parse the pre -- operator, using JPreDecrementOp and JUnaryExpression as the corresponding AST
representation

Modify postfixExpression() in Parser to parse the post ++ operator, using JPostIncrementOp and JUnaryExpression as the corresponding
AST representation

Problem 1 (Operators)

Testing

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/Operators.java

Compare your output with the reference output in parsing/Operators.ast

Problem 2 (Long and Double Basic Types)

Add support for the long and double basic types

Modify the following methods in Parser to support longs and doubles

- basicType()

- literal() (use JLiteralLong and JLiteralDouble as the AST representations for a long and double literal respectively)

- seeBasicType()

- seeReferenceType()

Testing

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/Factorial.java

$./bin/j-- -p parsing/Quadratic.java

Compare your output with the reference output in parsing/Factorial.ast and parsing/Quadratic.ast

Problem 3 (For Statement)

Add support for a for statement

Make the following changes in Parser to support a for statement

- Add ArrayList<JStatement> forInit() to parse the forInit part

- If not looking at a local variable declaration (use !seeLocalVariableDeclaration()), then return a list of statement
expressions

- Otherwise, return a list containing a single JVariableDeclaration object encapsulating the variable declarators (see
localVariableDeclarationStatement() for how to construct that object)

- Add ArrayList<JStatement> forUpdate() to parse the forUpdate part

- Modify statement() to parse a for statement, using JForStatement as the AST representation for a for statement

Testing

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/ForStatement.java

Compare your output with the reference output in parsing/ForStatement.ast

Problem 4 (Break Statement)

Add support for a break statement

Modify statement() to parse a break statement, using JBreakStatement as the AST representation

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/BreakStatement.java

Compare your output with the reference output in parsing/BreakStatement.ast

Problem 5 (Continue Statement)

Add support for a continue statement

Modify statement() to parse a continue statement, using JContinueStatement as the AST representation

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/ContinueStatement.java

Compare your output with the reference output in parsing/ContinueStatement.ast

Problem 6 (Switch Statement)

Add support for a switch statement

Make the following changes in Parser to support a switch statement

- Add SwitchStatementGroup switchBlockStatementGroup() to parse the switchBlockStatementGroup part

- After parsing one or more switchLabel, parse zero or more blockStatement until you see a CASE, DEFLT, or RCURLY

- Add JExpression switchLabel() to parse the switchLabel part, which must return an expression for a case and null for default

- Modify statement() to parse a switch statement, using JSwitchStatement as the AST representation for a switch statement

- After parsing SWITCH parExpression LCURLY, parse zero or more switchBlockStatementGroup until you see an RCURLY or EOF, and then
scan an RCURLY

& ~/workspace/j--

$ ant

$./bin/j-- -p parsing/SwitchStatement.java

Compare your output with the reference output in parsing/SwitchStatement.ast

	Problem 1 (Operators)
	Problem 2 (Long and Double Basic Types)
	Problem 3 (For Statement)
	Problem 4 (Break Statement)
	Problem 5 (Continue Statement)
	Problem 6 (Switch Statement)

