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Scanner

The first step in compiling a program is to break it into a sequence of tokens

The program that does this is called a scanner (aka lexical analyzer)

A scanner may be hand-crafted or generated
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Scanner

Example: the following j-- program

/ HelloWorld.java

1 // Writes the message "Hello , World" to standard output.

2
3 import java.lang.System;

4
5 public class HelloWorld {

6 // Entry point.

7 public static void main(String [] args) {

8 System.out.println("Hello , World");

9 }

10 }

is broken into the sequence import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

Comments and whitespace characters are ignored by the scanner
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Token Representation

Token representation consists of the token’s kind, its image, and the line in which it occurs in the source program

In j--, each token is represented as a TokenInfo object

Tokens are grouped into categories such as separators, operators, identifiers, literals, and reserved words (aka keywords)
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Token Representation

Example (sequence of tokens in HelloWorld.java)

Kind Image Line Category

IMPORT "import" 3 keyword

<IDENTIFIER> "java" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "lang" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "system" 3 identifier

SEMI ";" 3 separator

PUBLIC "public" 5 keyword

CLASS "class" 5 keyword

<IDENTIFIER> "HelloWorld" 5 identifier

LCURLY "{" 5 separator

PUBLIC "public" 7 keyword

STATIC "static" 7 keyword

VOID "void" 7 keyword

<IDENTIFIER> "main" 7 identifier

<LPAREN> "(" 7 separator

<IDENTIFIER> "String" 7 identifier

Kind Image Line Category

LBRACK "[" 7 separator

<RBRACK> "]" 7 separator

<IDENTIFIER> "args" 7 identifier

<RPAREN> ")" 7 separator

LCURLY "{" 7 separator

<IDENTIFIER> "System" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "out" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "println" 8 identifier

<LPAREN> "(" 8 separator

<STRING_LITERAL> "Hello, World" 8 literal

<RPAREN> ")" 8 separator

<SEMI> ";" 8 separator

RCURLY "}" 9 separator

RCURLY "}" 10 separator

<EOF> "<end of file>" 11 -
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