
Introduction to Compiler Construction
Scanning: Preliminaries



Outline

1 Scanner

2 Token Representation



Scanner

The first step in compiling a program is to break it into a sequence of tokens

The program that does this is called a scanner (aka lexical analyzer)

A scanner may be hand-crafted or generated



Scanner

The first step in compiling a program is to break it into a sequence of tokens

The program that does this is called a scanner (aka lexical analyzer)

A scanner may be hand-crafted or generated



Scanner

The first step in compiling a program is to break it into a sequence of tokens

The program that does this is called a scanner (aka lexical analyzer)

A scanner may be hand-crafted or generated



Scanner

The first step in compiling a program is to break it into a sequence of tokens

The program that does this is called a scanner (aka lexical analyzer)

A scanner may be hand-crafted or generated



Scanner

Example: the following j-- program

/ HelloWorld.java

1 // Writes the message "Hello , World" to standard output.

2
3 import java.lang.System;

4
5 public class HelloWorld {

6 // Entry point.

7 public static void main(String [] args) {

8 System.out.println("Hello , World");

9 }

10 }

is broken into the sequence import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

Comments and whitespace characters are ignored by the scanner



Scanner

Example: the following j-- program

/ HelloWorld.java

1 // Writes the message "Hello , World" to standard output.

2
3 import java.lang.System;

4
5 public class HelloWorld {

6 // Entry point.

7 public static void main(String [] args) {

8 System.out.println("Hello , World");

9 }

10 }

is broken into the sequence import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

Comments and whitespace characters are ignored by the scanner



Scanner

Example: the following j-- program

/ HelloWorld.java

1 // Writes the message "Hello , World" to standard output.

2
3 import java.lang.System;

4
5 public class HelloWorld {

6 // Entry point.

7 public static void main(String [] args) {

8 System.out.println("Hello , World");

9 }

10 }

is broken into the sequence import, java, ., lang, ., System,;, public, class, HelloWorld, {, . . . , ;, }, }

Comments and whitespace characters are ignored by the scanner



Token Representation

Token representation consists of the token’s kind, its image, and the line in which it occurs in the source program

In j--, each token is represented as a TokenInfo object

Tokens are grouped into categories such as separators, operators, identifiers, literals, and reserved words (aka keywords)



Token Representation

Token representation consists of the token’s kind, its image, and the line in which it occurs in the source program

In j--, each token is represented as a TokenInfo object

Tokens are grouped into categories such as separators, operators, identifiers, literals, and reserved words (aka keywords)



Token Representation

Token representation consists of the token’s kind, its image, and the line in which it occurs in the source program

In j--, each token is represented as a TokenInfo object

Tokens are grouped into categories such as separators, operators, identifiers, literals, and reserved words (aka keywords)



Token Representation

Token representation consists of the token’s kind, its image, and the line in which it occurs in the source program

In j--, each token is represented as a TokenInfo object

Tokens are grouped into categories such as separators, operators, identifiers, literals, and reserved words (aka keywords)



Token Representation

Example (sequence of tokens in HelloWorld.java)

Kind Image Line Category

IMPORT "import" 3 keyword

<IDENTIFIER> "java" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "lang" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "system" 3 identifier

SEMI ";" 3 separator

PUBLIC "public" 5 keyword

CLASS "class" 5 keyword

<IDENTIFIER> "HelloWorld" 5 identifier

LCURLY "{" 5 separator

PUBLIC "public" 7 keyword

STATIC "static" 7 keyword

VOID "void" 7 keyword

<IDENTIFIER> "main" 7 identifier

<LPAREN> "(" 7 separator

<IDENTIFIER> "String" 7 identifier

Kind Image Line Category

LBRACK "[" 7 separator

<RBRACK> "]" 7 separator

<IDENTIFIER> "args" 7 identifier

<RPAREN> ")" 7 separator

LCURLY "{" 7 separator

<IDENTIFIER> "System" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "out" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "println" 8 identifier

<LPAREN> "(" 8 separator

<STRING_LITERAL> "Hello, World" 8 literal

<RPAREN> ")" 8 separator

<SEMI> ";" 8 separator

RCURLY "}" 9 separator

RCURLY "}" 10 separator

<EOF> "<end of file>" 11 -



Token Representation

Example (sequence of tokens in HelloWorld.java)

Kind Image Line Category

IMPORT "import" 3 keyword

<IDENTIFIER> "java" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "lang" 3 identifier

DOT "." 3 separator

<IDENTIFIER> "system" 3 identifier

SEMI ";" 3 separator

PUBLIC "public" 5 keyword

CLASS "class" 5 keyword

<IDENTIFIER> "HelloWorld" 5 identifier

LCURLY "{" 5 separator

PUBLIC "public" 7 keyword

STATIC "static" 7 keyword

VOID "void" 7 keyword

<IDENTIFIER> "main" 7 identifier

<LPAREN> "(" 7 separator

<IDENTIFIER> "String" 7 identifier

Kind Image Line Category

LBRACK "[" 7 separator

<RBRACK> "]" 7 separator

<IDENTIFIER> "args" 7 identifier

<RPAREN> ")" 7 separator

LCURLY "{" 7 separator

<IDENTIFIER> "System" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "out" 8 identifier

DOT "." 8 separator

<IDENTIFIER> "println" 8 identifier

<LPAREN> "(" 8 separator

<STRING_LITERAL> "Hello, World" 8 literal

<RPAREN> ")" 8 separator

<SEMI> ";" 8 separator

RCURLY "}" 9 separator

RCURLY "}" 10 separator

<EOF> "<end of file>" 11 -


	Outline
	Scanner
	Token Representation

