
Introduction to Compiler Construction
Scanning: Generating a Scanner



Outline

1 Regular Expressions

2 Finite State Automata

3 Non-deterministic Versus Deterministic Finite State Automata

4 Regular Expressions to NFA

5 NFA to DFA

6 Minimal DFA



Regular Expressions

Regular expressions can be used to formally specify the syntax of tokens in a language

A regular expression r describes a language L(r) of strings over an alphabet Σ

Epsilon Rule: if r = ϵ, then L(r) consists only of the empty string

Singleton Rule: if r = a ∈ Σ, then L(r) consists only of the string a

Concatenation Rule: if r and s are regular expressions, then L(rs) consists of strings obtained by concatenating a string
from L(r) to a string from L(s)

Alternation Rule: if r and s are regular expressions, then L(r |s) consists of strings from L(r) or L(s)

Kleene Closure Rule: if r is a regular expression, then L(r∗) consists of strings obtained by concatenating zero or more
instances of strings from L(r)

Grouping Rule: both r and (r) describe the same language, ie, L(r) = L((r))
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Regular Expressions

Example: given an alphabet Σ = {a, b}
- aa|ab|ba|bb is the language of all two-symbol strings over the alphabet

- a(a|b)∗ is the language of all non-empty strings of a’s and b’s starting with an a

- (a|b)∗ab is the language of all strings of a’s and b’s ending in ab

Example (identifiers in j--): ( "a"..."z" | "A"..."Z" | "_" | "$" ) ( "a"..."z" | "A"..."Z" | "_" | "0"..."9" | "$" )*

Example (integer literals in j--): ( "0"..."9" ) ( "0"..."9" )*
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Finite State Automata

For any language described by a regular expression, there is a state diagram called Finite State Automaton (FSA) that
can recognize the same language

An FSA is a quintuple A = (Σ, S, s0,F ,M), where

1. Σ is the input alphabet

2. S is a set of states

3. s0 ∈ S is a special start state

4. F ⊆ S is a set of final states

5. M is a set of moves (aka transitions) of the form m(r , a) = s, where r , s ∈ S and a ∈ Σ
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Finite State Automata

Example (an FSA A that recognizes L((a|b)a∗b))

0 1 2

a

b

a

b

Formally, A = (Σ, S, s0,F ,M), where Σ = {a, b}, S = {0, 1, 2}, s0 = 0, F = {2}, and M is

r a m(r , a)

0 a 1

0 b 1

1 a 1

1 b 2
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Non-deterministic Versus Deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is one that allows

- An ϵ-move defined on the empty string ϵ, ie, m(r , ϵ) = s

- More than one move from a state r on an input symbol a, ie, m(r , a) = s and m(r , a) = t, where s ̸= t

An NFA is said to recognize an input string if, starting in the start state, there exists a set of moves based on the input
that takes us into one of the final states
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Non-deterministic Versus Deterministic Finite State Automata

A deterministic finite state automaton (DFA) is one in which

- There are no ϵ-moves

- There is a unique move from any state r on an input symbol a, ie, if m(r , a) = s and m(r , a) = t, then s = t

- There is a transition out of every state r on every input symbol a



Non-deterministic Versus Deterministic Finite State Automata

A deterministic finite state automaton (DFA) is one in which

- There are no ϵ-moves

- There is a unique move from any state r on an input symbol a, ie, if m(r , a) = s and m(r , a) = t, then s = t

- There is a transition out of every state r on every input symbol a



Non-deterministic Versus Deterministic Finite State Automata

Example: an NFA N that recognizes the language described by a(a|b)∗b over the alphabet {a, b}
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Non-deterministic Versus Deterministic Finite State Automata

Example: a DFA D that recognizes the language described by a(a|b)∗b over the alphabet {a, b}
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Regular Expressions to NFA
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Regular Expressions to NFA · Thompson’s Construction (Epsilon Rule)

NFA Nr for recognizing L(r = ϵ)

start final
ϵ
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Regular Expressions to NFA · Thompson’s Construction (Concatenation Rule)

NFAs Nr and Ns for recognizing L(r) and L(s)

start final start final

Nr Ns

NFA Nrs for recognizing L(rs)

start final
ϵ

Nr Ns
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Regular Expressions to NFA · Thompson’s Construction (Grouping Rule)

NFA Nr for recognizing L(r) also recognizes L((r))
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Regular Expressions to NFA

Example (NFA for (a|b)a∗b)

Using the singleton rule, we get the NFAs Na and Nb for recognizing a and b as

1 2
a

3 4
b

Using the alternation and grouping rules, we get the NFA N(a|b) for recognizing (a|b) as

0
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ϵ
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Regular Expressions to NFA

Using the singleton rule, we get the NFAs Na for recognizing the second instance of a as

7 8
a

Using the Kleene closure rule, we get the NFA Na∗ for recognizing a∗ as

6 7 8 9
ϵ a

ϵ

ϵ

ϵ
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Regular Expressions to NFA

Using the concatenation rule, we get the NFA N(a|b)a∗ for recognizing (a|b)a∗
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Using the singleton rule, we get the NFAs Nb for recognizing the second instance of b as
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Regular Expressions to NFA

Finally, using the concatenation rule, we get the NFA N(a|b)a∗b for recognizing (a|b)a∗b as
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NFA to DFA

For any NFA N, we can construct an equivalent DFA D such that L(D) = L(N)

The DFA is always in a state that simulates all the possible states that the NFA could possibly be in having scanned the
same portion of the input

ϵ-closure(s) computes all states reachable from a given state s using ϵ-moves alone

ϵ-closure(s) = {s} ∪ {r ∈ S | there is a path of only ϵ-moves from s to r}

ϵ-closure(S) computes all states reachable from any state s ∈ S using ϵ-moves alone

ϵ-closure(S) =
⋃
s∈S

ϵ-closure(s)
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NFA to DFA · ϵ-closure(S)

Input: a set of states S
Output: ϵ-closure(S)
1: P ← Stack(S)
2: C ← Set(S)
3: while not P.isEmpty() do
4: r ← P.pop()
5: for s ∈ m(r , ϵ) do
6: if s /∈ C then
7: P.push(s)
8: C .add(s)
9: end if

10: end for
11: end while
12: return C
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1: P ← Stack(S)
2: C ← Set(S)
3: while not P.isEmpty() do
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6: if s /∈ C then
7: P.push(s)
8: C .add(s)
9: end if

10: end for
11: end while
12: return C



NFA to DFA · ϵ-closure(s)

Input: a state s
Output: ϵ-closure(s)
1: S ← Set(s)
2: return ϵ-closure(S)
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Output: ϵ-closure(s)
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NFA to DFA · Subset Construction

Input: an NFA N = (Σ, S, s0,M, F )
Output: an equivalent DFA D = (Σ, SD , sD0,MD , FD )
1: sD0 ← ϵ-closure(s0)
2: SD ← Set(sD0)
3: MD ← Moves()
4: stk ← Stack(sD0)
5: i ← 1
6: while not stk.isEmpty() do
7: r ← stk.pop()
8: for a ∈ Σ do
9: sDi ← ϵ-closure(∪r′∈r m(r′, a))
10: if sDi ̸= {} then
11: if sDi /∈ SD then
12: SD .add(sDi )
13: stk.push(sDi )
14: i ← i + 1
15: MD .add((r, a) → sDi )
16: else
17: MD .add((r, a) → sj ), where sj ∈ SD such that sj = sDi
18: end if
19: else
20: SD .add(ϕ); MD .add((r, a) → ϕ); and MD .add((ϕ, a) → ϕ)
21: end if
22: end for
23: end while
24: FD ← Set()
25: for sD ∈ SD do
26: for s ∈ sD do
27: if s ∈ F then
28: FD .add(sD )
29: end if
30: end for
31: end for
32: return D = (Σ, SD , sD0,MD , FD )
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22: end for
23: end while
24: FD ← Set()
25: for sD ∈ SD do
26: for s ∈ sD do
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31: end for
32: return D = (Σ, SD , sD0,MD , FD )
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Minimal DFA

To obtain a smaller but equivalent DFA, we partition the states such that the states in the new DFA are subsets of the
states in the original DFA

The initial partition contains two subsets: the non-final states and the final states

We make sure that from each subset, on each input symbol, we transition into an identical subset; otherwise, we split
the subset
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Minimal DFA · Partitioning

Input: a DFA D = (Σ, S , s0,M,F )
Output: a partition of S
1: P ← {S − F ,F}
2: while splitting occurs do
3: for Q ∈ P do
4: if Q.size() > 1 then
5: for a ∈ Σ do
6: r ← a state chosen from Q
7: T ← the subset in the P containing m(r , a)
8: Q1 ← {s ∈ Q|m(s, a) ∈ T}
9: Q2 ← {s ∈ Q|m(s, a) /∈ T}

10: if Q2 ̸= {} then
11: replace Q in P by Q1 and Q2

12: break
13: end if
14: end for
15: end if
16: end for
17: end while
18: return P
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Minimal DFA

Example (minimal DFA for D(a|b)a∗b)

0
{0, 1, 3}

1
{2, 5, 6,
7, 9, 10}

2
{4, 5, 6,
7, 9, 10}

3
{7, 8, 9, 10}

4
{11} ϕ

a

b

a

a

b

b

b

a

a

b

a

b

Initial partition P = {{0, 1, 2, 3, ϕ}, {4}}

The input symbol a does not split the subset Q = {0, 1, 2, 3, ϕ}

The input symbol b splits the subset Q = {0, 1, 2, 3, ϕ} into Q1 = {0, ϕ} and Q2 = {1, 2, 3}

The new and final partition is P = {{0}, {1, 2, 3}, {4}, {ϕ}}
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