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JavaCC Overview

JavaCC is a tool for generating scanners from lexical grammars and parsers from syntactic grammars
The lexical and the syntactic grammars are both included within the same input file having a .j; extension

JavaCC allows BNF syntax such as ¢ a )« within the lexical and syntactic grammars
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Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the peraver state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state
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Four types of regular expressions
1. more: continues to the next state, taking the matched string along
2. sxp: throws away the matched string
3. seecraL_toxken: creates a special token that does not participate in the parsing
4

. token: creates a token from the matched string and returns it to the parser
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BNF syntax
- (a)? for “zero or one” occurrence of a
- (a)« for “zero or more” occurrences of a
- (alv) for either a or »
- [ "a" - "d", "x", "y”] fol' a, b, Cy d, X, Or y

- ) for grouping
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JavaCC generates a scanner for j-—- from regular expressions defined in $j/j--/src/jminusninus/j--. 33

j==33 ——{Javacc | JavaCCParserTokenManager . java
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JavaCC Scanner for j-- - Scanning Whitespace

SKIP: { " " | "\t" | "\mn" | "\r" | "\f" }
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Method 1

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }
<IN_SINGLE_LINE_COMMENT>
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JavaCC Scanner for j-- - Scanning Single-line Comments

Method 1

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }
<IN_SINGLE_LINE_COMMENT >
SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }
<IN_SINGLE_LINE_COMMENT>
SKIP: { <COMMENT: ~[]> }

Method 2
SPECIAL_TOKEN: {
<SINGLE_LINE_COMMENT: "//" ( ~[ "\n", "\r" ] )x ( "\n" | "\r" | "\r\n" )>

¥
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JavaCC Scanner for j-- - Scanning Reserved words, Separators, and Operators

Reserved words
TOKEN: {
<ABSTRACT: "abstract">
| <BOOLEAN: "boolean">

| <WHILE: "while">

Separators
TOKEN: {
<COMMA: ",">
| <DOT: ".">

| <SEMI: ";">

Operators

TOKEN: {
<ASSIGN:
| <DEC:

| <STAR: "x">
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JavaCC Scanner for j-- - Scanning ldentifiers

TOKEN: {

<IDENTIFIER: ( <LETTER> | "_" |
| <#LETTER: [ "a"-"z", "A"-"Z" ]>
| <#DIGIT: [ "o"-"9" ]>
}

"$" ) ( <LETTER> | <DIGIT> | "_" | "$" )x>
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JavaCC Scanner for j-- - Scanning Literals

TOKEN: {

<INT_LITERAL: <DIGITS>>
| <CHAR_LITERAL: "’" ( <ESC> | ~[ ">", "\\" ] ) ">">
| <STRING_LITERAL: "\"" ( <ESC> | ~[ "\"", "\\" ] )x "\"">
| <#DIGITS: <DIGIT> ( <DIGIT> )x* >
| <#ESC: "\\" [ "n", "t", "b", "r", "£", "\\", "on, m\vr ]>
}
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