
Introduction to Compiler Construction
Scanning: JavaCC Scanner for j--

Outline

1 JavaCC Overview

2 Scanning in JavaCC

3 JavaCC Scanner for j--

JavaCC Overview

JavaCC is a tool for generating scanners from lexical grammars and parsers from syntactic grammars

The lexical and the syntactic grammars are both included within the same input file having a .jj extension

JavaCC allows BNF syntax such as (A)* within the lexical and syntactic grammars

JavaCC Overview

JavaCC is a tool for generating scanners from lexical grammars and parsers from syntactic grammars

The lexical and the syntactic grammars are both included within the same input file having a .jj extension

JavaCC allows BNF syntax such as (A)* within the lexical and syntactic grammars

JavaCC Overview

JavaCC is a tool for generating scanners from lexical grammars and parsers from syntactic grammars

The lexical and the syntactic grammars are both included within the same input file having a .jj extension

JavaCC allows BNF syntax such as (A)* within the lexical and syntactic grammars

JavaCC Overview

JavaCC is a tool for generating scanners from lexical grammars and parsers from syntactic grammars

The lexical and the syntactic grammars are both included within the same input file having a .jj extension

JavaCC allows BNF syntax such as (A)* within the lexical and syntactic grammars

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

A lexical grammar consists a set of regular expressions and a set of lexical states

Scanning begins in the DEFAULT state

From a particular state, a set of regular expressions may be matched by the input

From the matched regular expressions, the scanner picks the one that consumes the most number of input characters

After a match, the scanner may transition into a different state or stay in the current state

Scanning in JavaCC

Four types of regular expressions

1. MORE: continues to the next state, taking the matched string along

2. SKIP: throws away the matched string

3. SPECIAL_TOKEN: creates a special token that does not participate in the parsing

4. TOKEN: creates a token from the matched string and returns it to the parser

Scanning in JavaCC

Four types of regular expressions

1. MORE: continues to the next state, taking the matched string along

2. SKIP: throws away the matched string

3. SPECIAL_TOKEN: creates a special token that does not participate in the parsing

4. TOKEN: creates a token from the matched string and returns it to the parser

Scanning in JavaCC

BNF syntax

- (a)? for “zero or one” occurrence of a

- (a)* for “zero or more” occurrences of a

- (a | b) for either a or b

- ["a" - "d", "x", "y"] for a, b, c, d, x, or y

- () for grouping

Scanning in JavaCC

BNF syntax

- (a)? for “zero or one” occurrence of a

- (a)* for “zero or more” occurrences of a

- (a | b) for either a or b

- ["a" - "d", "x", "y"] for a, b, c, d, x, or y

- () for grouping

JavaCC Scanner for j--

JavaCC generates a scanner for j-- from regular expressions defined in $j/j--/src/jminusminus/j--.jj

j--.jj javacc JavaCCParserTokenManager.java

JavaCC Scanner for j--

JavaCC generates a scanner for j-- from regular expressions defined in $j/j--/src/jminusminus/j--.jj

j--.jj javacc JavaCCParserTokenManager.java

JavaCC Scanner for j-- · Scanning Whitespace

SKIP: { " " | "\t" | "\n" | "\r" | "\f" }

JavaCC Scanner for j-- · Scanning Whitespace

SKIP: { " " | "\t" | "\n" | "\r" | "\f" }

JavaCC Scanner for j-- · Scanning Single-line Comments

Method 1

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <COMMENT: ~[]> }

Method 2

SPECIAL_TOKEN: {

<SINGLE_LINE_COMMENT: "//" (~["\n", "\r"])* ("\n" | "\r" | "\r\n")>

}

JavaCC Scanner for j-- · Scanning Single-line Comments

Method 1

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <COMMENT: ~[]> }

Method 2

SPECIAL_TOKEN: {

<SINGLE_LINE_COMMENT: "//" (~["\n", "\r"])* ("\n" | "\r" | "\r\n")>

}

JavaCC Scanner for j-- · Scanning Single-line Comments

Method 1

SKIP: { <BEGIN_COMMENT: "//">: IN_SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <END_COMMENT: "\n" | "\r" | "\r\n">: DEFAULT }

<IN_SINGLE_LINE_COMMENT >

SKIP: { <COMMENT: ~[]> }

Method 2

SPECIAL_TOKEN: {

<SINGLE_LINE_COMMENT: "//" (~["\n", "\r"])* ("\n" | "\r" | "\r\n")>

}

JavaCC Scanner for j-- · Scanning Reserved words, Separators, and Operators

Reserved words

TOKEN: {

<ABSTRACT: "abstract">

| <BOOLEAN: "boolean">

...

| <WHILE: "while">

}

Separators

TOKEN: {

<COMMA: ",">

| <DOT: ".">

...

| <SEMI: ";">

}

Operators

TOKEN: {

<ASSIGN: "=">

| <DEC: "--">

...

| <STAR: "*">

}

JavaCC Scanner for j-- · Scanning Reserved words, Separators, and Operators

Reserved words

TOKEN: {

<ABSTRACT: "abstract">

| <BOOLEAN: "boolean">

...

| <WHILE: "while">

}

Separators

TOKEN: {

<COMMA: ",">

| <DOT: ".">

...

| <SEMI: ";">

}

Operators

TOKEN: {

<ASSIGN: "=">

| <DEC: "--">

...

| <STAR: "*">

}

JavaCC Scanner for j-- · Scanning Reserved words, Separators, and Operators

Reserved words

TOKEN: {

<ABSTRACT: "abstract">

| <BOOLEAN: "boolean">

...

| <WHILE: "while">

}

Separators

TOKEN: {

<COMMA: ",">

| <DOT: ".">

...

| <SEMI: ";">

}

Operators

TOKEN: {

<ASSIGN: "=">

| <DEC: "--">

...

| <STAR: "*">

}

JavaCC Scanner for j-- · Scanning Reserved words, Separators, and Operators

Reserved words

TOKEN: {

<ABSTRACT: "abstract">

| <BOOLEAN: "boolean">

...

| <WHILE: "while">

}

Separators

TOKEN: {

<COMMA: ",">

| <DOT: ".">

...

| <SEMI: ";">

}

Operators

TOKEN: {

<ASSIGN: "=">

| <DEC: "--">

...

| <STAR: "*">

}

JavaCC Scanner for j-- · Scanning Identifiers

TOKEN: {

<IDENTIFIER: (<LETTER > | "_" | "$") (<LETTER > | <DIGIT > | "_" | "$")*>

| <#LETTER: ["a"-"z", "A"-"Z"]>

| <#DIGIT: ["0" -"9"]>

}

JavaCC Scanner for j-- · Scanning Identifiers

TOKEN: {

<IDENTIFIER: (<LETTER > | "_" | "$") (<LETTER > | <DIGIT > | "_" | "$")*>

| <#LETTER: ["a"-"z", "A"-"Z"]>

| <#DIGIT: ["0" -"9"]>

}

JavaCC Scanner for j-- · Scanning Literals

TOKEN: {

<INT_LITERAL: <DIGITS >>

| <CHAR_LITERAL: "’" (<ESC > | ~["’", "\\"]) "’">

| <STRING_LITERAL: "\"" (<ESC > | ~["\"", "\\"])* "\"">

| <#DIGITS: <DIGIT > (<DIGIT >)* >

| <#ESC: "\\" ["n", "t", "b", "r", "f", "\\", "’", "\""]>

}

JavaCC Scanner for j-- · Scanning Literals

TOKEN: {

<INT_LITERAL: <DIGITS >>

| <CHAR_LITERAL: "’" (<ESC > | ~["’", "\\"]) "’">

| <STRING_LITERAL: "\"" (<ESC > | ~["\"", "\\"])* "\"">

| <#DIGITS: <DIGIT > (<DIGIT >)* >

| <#ESC: "\\" ["n", "t", "b", "r", "f", "\\", "’", "\""]>

}

	Outline
	JavaCC Overview
	Scanning in JavaCC
	JavaCC Scanner for j–
	Scanning Whitespace
	Scanning Single-line Comments
	Scanning Reserved words, Separators, and Operators
	Scanning Identifiers
	Scanning Literals

