
Marvin Machine Specification

Marvin is a hypothetical computer with sixteen 16-bit registers and 65,536 32-bit words of main memory (aka RAM). In
addition to the sixteen registers, Marvin has a 16-bit program counter pc and a 32-bit instruction register ir.

Registers: Marvin specifies the following conventions for its sixteen registers:

� r0 – r11 are general purpose registers.

� r12 is reserved to store the return address (ra) of the calling subroutine (aka function).

� r13 is reserved to store the return value of a subroutine.

� r14, called the frame pointer (fp), is reserved to store the base address of the most recent frame on the stack. It is
initialized to 8192 when the computer boots.

� r15, called the stack pointer (sp), is reserved to store the address of the top of the stack. It is initialized to 8192 when
the computer boots.

Main Memory: Marvin’s main memory is divided into a text segment and a stack segment, as shown below:

Text

Stack

0

8192

65535

fp, sp →
x

The text segment extends from address 0 to address 8191. A Marvin program, which is a .marv file, is assembled and loaded
into this segment starting at address 0.

The stack segment starts at address 8192 and grows upwards1 up to address 65535. This is where a subroutine’s arguments,
its local variables, and temporaries are stored.

When a subroutine is called, a stack frame must be created for it on the stack, and it must be oraganized as shown below:

8192

65535

...
arg2

arg1

ra

old fp

local variables

temporaries

fp →

sp →

1Conventionally, the stack segment grows downwards from a higher address towards a lower address.

1 / 3

Marvin Machine Specification

Instructions: Marvin supports 32 instructions, each of which accepts between 0 and 3 arguments (aka inputs).

System instructions:

Opcode 32-bit Machine Code Description
halt 00000000 00000000 00000000 00000000 stops the machine
read rX 00000001 00000000 00000000 0000XXXX sets rX = N, where N ∈ [−215, 215 − 1] read from standard input
write rX 00000010 00000000 00000000 0000XXXX writes rX to standard output
nop 00000011 00000000 00000000 00000000 does nothing

Arithmetic instructions:

Opcode 32-bit Machine Code Description
neg rX rY 00001001 00000000 00000000 XXXXYYYY sets rX = -rY

add rX rY rZ 00001010 00000000 0000XXXX YYYYZZZZ sets rX = rY + rZ

sub rX rY rZ 00001011 00000000 0000XXXX YYYYZZZZ sets rX = rY - rZ

mul rX rY rZ 00001100 00000000 0000XXXX YYYYZZZZ sets rX = rY * rZ

div rX rY rZ 00001101 00000000 0000XXXX YYYYZZZZ sets rX = rY // rZ

mod rX rY rZ 00001110 00000000 0000XXXX YYYYZZZZ sets rX = rY % rZ

Jump instructions:

Opcode 32-bit Machine Code Description
jumpn N 00001111 00000000 NNNNNNNN NNNNNNNN jumps to instruction N

jumpr rX 00010000 00000000 00000000 0000XXXX jumps to rX

jeqzn rX N 00010001 0000XXXX NNNNNNNN NNNNNNNN jumps to instruction N if rX == 0

jnezn rX N 00010010 0000XXXX NNNNNNNN NNNNNNNN jumps to instruction N if rX != 0

jgen rX rY N 00010011 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX >= rY

jlen rX rY N 00010110 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX <= rY

jeqn rX rY N 00010100 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX == rY

jnen rX rY N 00010101 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX != rY

jgtn rX rY N 00010111 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX > rY

jltn rX rY N 00011000 XXXXYYYY NNNNNNNN NNNNNNNN jumps to instruction N if rX < rY

calln rX N 00011001 0000XXXX NNNNNNNN NNNNNNNN sets rX = pc + 1 and jumps to instruction N

Instructions for setting register data:

Opcode 32-bit Machine Code Description
set0 rX 00000100 00000000 00000000 0000XXXX sets rX = 0

set1 rX 00000101 00000000 00000000 0000XXXX sets rX = 1

setn rX N 00000110 0000XXXX NNNNNNNN NNNNNNNN sets rX = N, where N ∈ [−215, 215 − 1]
addn rX N 00000111 0000XXXX NNNNNNNN NNNNNNNN sets rX = rX + N, where N ∈ [−215, 215 − 1]
copy rX rY 00001000 00000000 00000000 XXXXYYYY sets rX = rY

Instructions for interacting with memory:

Opcode 32-bit Machine Code Description
pushr rX rY 00011010 00000000 00000000 XXXXYYYY sets mem[rY++] = rX

popr rX rY 00011011 00000000 00000000 XXXXYYYY sets rX = mem[--rY]

loadn rX rY N 00011100 XXXXYYYY NNNNNNNN NNNNNNNN sets rX = mem[rY + N], where N ∈ [−215, 215 − 1]
storen rX rY N 00011101 XXXXYYYY NNNNNNNN NNNNNNNN sets mem[rY + N] = rX, where N ∈ [−215, 215 − 1]
loadr rX rY 00011110 00000000 00000000 XXXXYYYY sets rX = mem[rY]

storer rX rY 00011111 00000000 00000000 XXXXYYYY sets mem[rY] = rX

2 / 3

Marvin Machine Specification

Marvin Emulator: The Python program marvin.py serves as an emulator for the Marvin machine. Here is the usage syntax
for the program:

L Countdown.marv

$ python3 marvin.py

Usage: marvin.py [-v] <.marv file >

This program serves as an emulator for a register -based machine called Marvin (named after
the paranoid android character , Marvin , from The Hitchhiker ’s Guide to the Galaxy by
Douglas Adams). The design of the machine was inspired by that of the Harvey Mudd
Miniature Machine (HMMM) developed at Harvey Mudd College. The program accepts a .marv file
as input , assembles and simulates the instructions within , and prints any output to stdout.
Any input to the .marv program is via stdin. If the optional -v argument is specified ,
the emulator prints the assembled instructions to stdout before simulating them.
$ _

Here is a sample Marvin program called Coundown.marv that accepts n (int) from standard input and writes to standard output
a countdown from n to 0.

L Countdown.marv

Accepts n (int) from standard input and writes a countdown from n to 0 to standard output.

0 read r0 # read n
1 set0 r1 # zero = 0
2 jltn r0 r1 6 # if n < zero jump to 6
3 write r0 # write n
4 addn r0 -1 # n = n - 1
5 jumpn 2 # jump to 2
6 halt # halt the machine

Here is the output from running Countdown.marv using marvin.py, which is an emulator for the Marvin machine.

& ~/workspace/marvin

$ python3 marvin.py -v Countdown.marv
0: 00000001 00000000 00000000 00000000 0: read r0
1: 00000100 00000000 00000000 00000001 1: set0 r1
2: 00011000 00000001 00000000 00000110 2: jltn r0 r1 6
3: 00000010 00000000 00000000 00000000 3: write r0
4: 00000111 00000000 10000000 00000001 4: addn r0 -1
5: 00001111 00000000 00000000 00000010 5: jumpn 2
6: 00000000 00000000 00000000 00000000 6: halt

5
5
4
3
2
1
0
$ _

3 / 3

