CS420
Finite Automata and
Regular Languages

Instructor: Stephen Chang
Mon Sept 14, 2020
UMass Boston Computer Science

HW 0 Questions?

\WHENEVER T LEARN A
NEW SKILL I CoNCoCT
ELABORATE FANTASY
SCENARI0S WHERE (T
LETS ME SAVE THE DAY,

OH NO! THE KILLER
MUST HAVE FOLLOWED
HER ON VACATION |

(5

BUT TO FIND THEM WED HAVE T0 SEARCH
THROUGH 200 MB (F EMAILS LOOKING FOR
SOMETHING EDRMATTED LIKE AN ADDRESS!

!
i ‘i&h IT5 HOPELESS!

CErr 3 el

fr £

T KNOW REGULAR
EXPRESSIONS .

b X

b

IF YOURE HAVIN' PERL
PROBLEMS I FEEL
BAD FOR YOU, SON—

L GoT 99

i

NoW T HAVE
100 PROBLEMS.

i

Quick Poll: Regular Expressions
The Good, the Bad, the ... Weird?

REGEX. GOLF:

YOU TRY T© MATCH ONE
GROUP BUT NOT THE OTHER.

1
/M | [N]|B/ MATCHES
STAR WARS SUBTITLES
BUT NOT S7AR TREK.

vy

{MEM-REGEX GOLF: |—

(META-META-REGEX GOLF: |

... AND BEYOND: |

50 T LIROTE A PROGRAM
THAT PLAYS REGEX GOLF
WITH ARBITRARY LISTS...

=

3

/

...BUT I LOST MY (OLX,
50 I™M GREPPING FOR
FILES THAT (00K LIKE

REGEX GOLF SOLVERS.

(

REALLY, THIS 15 ALL
/(META-)*REGEX GOLF.

NOW YOU HAVE
INEMITE PROBLEMG.

NO, T HAD

Deterministic Finite Automata (DFAs)

A computational model for ...

.
o
L '
'
D Bon I
! ';/
s R
S >
o
15]

A Finite Automata (or State Machine)

Inputs change states
(possibly)

press stop press start

é press start é
press stop

States

Finite Automata: Not Just for Microwaves

Finite Automata:

a common ”
programming pattern |

Finite Automata 1n: Video Games

H ValveSoftware / halflife G
<> Code (1) Issues 1.6k 11 Pull requests 23 (») Actions ("] Projects L Wiki C
#* 5d4761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

Ax 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simpl: finite state machine el capsulation

// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE_MACHINE H_
#define SIMPLE_STATE_MACHINE H_

J**
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

.

Model-view-controller (MVC) is a FSM

MODEL

~ N

States
UPDATES MANIPULATES Inputs Change States
VIEW CONTROLLER
\ /
.)
View Draw states Y &
N\ /

Finite Automata in this class: state diagram

Accept State
1
1 0
Start State 0 Inputs cause state transitions

States

JELAP demo: “Running” an FSM “Program”

|
 FSM: }o 1 e

* Program: “1101”

Finite Automata: The Formal Definition

DEFINITION 1.5
A finite automaton is a S-tuple (Q, X, 9, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q x X—(Q is the transition function,
4. qo € Q 1s the start state, and

5. F C Q 1s the set of accept states.

DEFINITION 1.5
A finite automaton is ¢ 5-tuple (Q, X, 6, qo, F'). where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. do € Q 1S the Sta”Stﬂte, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
O 1
0 qd1 |1 91 g2
q2 | 43 42
1 43 | 42 42,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. () is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, . Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. qdo = Q 1S the Sta”Stﬂte, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
0] 1
0 di1 | dq1 42
d2 | 43 g2
1 93 | 92 42,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. do € Q 1S the Sta”Stﬂte, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
o) 1
0 qd1 | 91 g2
q2 | 43 42
1 43 | 42 42,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2. X = {Oa]—}a
4. do € Q 1S the Sta”Stﬂte, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
O 1
0 qd1 |1 91 g2
q2 | 43 42
1 43 | 42 42,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

DEFINITION 1.5
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (5, qi, F), where

1. @ is a finite set called the states, 1 _
2. ¥ is a finite set called the alpbabet, Q {Ql 42, 43 }’
3. 0: Q X ¥— () is the transition function, 2.) = {Oa]—}a
4. qo € Q 1S the start state, and 3‘ 5 iS descrijed 1S
5. F C @ is the set of accept states.
O 1
0 qd1 |1 91 g2
q2 | 43 42
1 43 | 42 42,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

INn-class exercise

« Come up with a formal description of the following machine:

DEFINITION 1.5
A finite automaton is a 5-tuple (Q), X, 6, qo, F'), where

1.) is a finite set called the states,

2. Y is a finite set called the alpbabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q is the start state, and

5. F' C Q is the set of accept states.

Terminology

* These are all equivalent:
» Finite State Machine (FSM)
e Finite Automaton, Automata, Automaton
e State Machine

* They generally describe the class of machines studied in Ch 1

« What | just introduced:
« Deterministic Finite Automata (DFA)

« A specific kind of FSM, corresponding to Definition 1.5

- At this point in the course all terms on this slide are the same
« But they wont be later

Math vs Its Code Representation

 In CS420 we use code to explore mathematical objects
« But it's important to understand the distinction

 E.g., a set Is an abstract mathematical object
« contains other math objects like: strings, nums, characters, and other sets!

» A set’s (data) representation in code can take many forms:
 e.g., a list, an array, a space-separated string

 This course teaches abstract mathematical concepts
* Itis up to you how to represent the math as code and data!

Math vs Representation, Examples

Abstract Math Concept

Numbers
Set
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

23

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

24

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set)
Function, I.e., a set of pairs
Finite automata

25

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs
Finite automata

26

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs Function, dict, map, hash, tree
Finite automata

27

Math vs Representation, Examples

Abstract Math Concept

Numbers Int, Bigint, float, double
Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list

Function, I.e., a set of pairs Function, dict, map, hash, tree
Finite automata XML str, <your choice here>

28

“‘Running a Program” on a Finite Automata

* Program = an input string of characters
e Start in “Start State”
« One char at a time, follow transition table to change states

« Result of running the program:
« “Accept” the input if last state I1s an “Accept State”
« “Reject” otherwise

Formal Definition of “Computation”

M = (Q,>,0,q0, F') a finite automaton

w = wiwsy--- w, astring where each w; is a member of the alphabet 3.
M accepts w if a sequence of states g, r1, ..., 7, in () exists with three conditions:
1. o — qo,

2. 5(?"?;, ’wz'_|_1) — Ti4+1, for: = O, SR 1, and

3.1, € F.

Condition 1 machine starts in the start state.

Condition 2 mac

Cond

hine goes from state to state according to the transition function.

ition 3 machine accepts its input if it ends up in an accept state.

Terminology

* M accepts w

- M recognizes language A
it A = {w| M accepts w}

* A language is called a regular language

if some finite automaton recognizes it.

Proving that a language I1s regular

Kinds of Mathematical Proof

 Proof by construction
« Construct the mathematical object in question

 Proof by contradiction

 Proof by induction

Proving that a language I1s regular

« Often requires creating a FSM

A language is called a regular language

if some finite automaton recognizes it.

Designing Finite Automata

« States = the machine’s memory!
 Finite amount of memory: must be allocated in advance
* Think about what information must be remembered.

« Example: machine accepts strings with even number of 0s
« Two states: 1) seen even number of 0s, 2) seen odd number of 0s

 Input may only be read once

« Must decide accept/reject after that

In-class example

- Design machine M that recognizes: {w |w has exactly three 1's}

e Where 2= {0, 1},
DEFINITION 1.5

e Remember: A finite automaton is a 5-tuple (Q, X, 9, qo, F'), where

1. @ is a finite set called the states,

2. . 1s a finite set called the alphabet,

3.0: Q x X—Q 1s the transition function,
4. qo € @ is the start state, and

5. F C Q 1s the set of accept states.

Check-in Quiz 1

https://www.gradescope.com/courses/160337/assignments/650219

37

https://www.gradescope.com/courses/160337/assignments/650219

End of Class survey 9/14

https://forms.gle/pZgmX3urYRN5sn3t5

38

