THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM
THAT TAKES AN INPUT w OF LENGTH n AND

PRODUCES Ep,.. THE RUNNING TIME IS O(P*™)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND...

WTF, MAN, I JUST
WANTED TO LEARN
HOW TO PROGRAM
VIDEO GAMES.

funnpoint.com

Nondeterminism
Monday Sept 21, 2020

61

Hw1 questions?

62

it applies an activation function g

HOW tO COde (ReCap) IMLspecn"lczatl_or;((lmz V= g ZWN%

Anonymous Scale 2 17 hours ago j= 0
Just to add | dao aaree that codina is difficult _hut | think what ia meant hv that ig tranclatina tha math

into ¢ Since 2011, engineers at Amazon Web Services (AWS) have been using formal specification and model Dg(:

2" checking to help solve difficult design problems in critical systems. This paper describes our motivation |OW

But tl

o We found what we were looking for in TLA+ ", a formal specification language. TLA+ is based on simple | ¢

discrete math, i.e basic set theory and predicates, with which all engineers are familiar. A TLA+ ”m

"Translating the math into code" is exactly the definition of "knowing ho\ & | ‘1 \

— A — Aalin,

Typically, the "math" is called i1 "specification" or "requirements”, and it's — SRR e 75% W) ;
combination of vague English ana acwai mauwn, just uke e nw aescriptic < MESS&Q =< the client Details

near as clear and detailed as my writing of course).

And from this specification you will be expected to ship a fully working pi
testing with an autograder either) at the end of a tight schedule.

hey I'll pay you $100k to
develop my social media

For non-software industry programming jobs, you'll get even less directic app

Again, | say this not to belittle or discourage, but to try to prepare you all = -
futures as best | can. My door is always open to anyone who wants to te

How to Code: Step 1, Data Defs oo e

Numbers Int, Biglnt, float, double

Set List, array, tree
Tuple (i.e., a small finite set) Struct, object, list
o o o o Function, i.e., a set of pairs Function, dict, map, hash, tree
Y D eS I gn yO u r D ata D efl n Itl O n S Finite automata XML str, <your choice here>

* |le, representation of real-world thing(s) your program operates on
« AUser isa struct containing

. String name eeeC0 Sprint LTE 9:22 AM 75% N>
. String screenname { Messages the client Details
« Int internal _ID - o0k

. ey I'll pay you (0]
* L1st<Post> pOStS develop my social media
e List<User> followers S

* A Post is a (140 character) String ok |

How to Code: Step 2, Data Operations

« Design Operations for your data from step 1

* Users need to:
e Post()
e Delete()
e Like()
e Follow()

» A good specification/requirement (like the hw) gives this to you

How to Code: Step 3, start coding

- Implement the operations, step-by-step

« Start with one tiny, simple, observable piece of code
« E.g., read input; print as output

* Add more code slowly, step-by-step
« Should be guided by your data definitions and operations

 E.g.,, read input as xml file
« Then Parse xml file, print states
« Then Parse transitions, then construct DFA object

« Make sure the program changes how you expect at each step

" Wantto be able to

easily combine finite
automata machines

" To keep combining

operations must
be closed!

How to Code: Step 4, testing

 Build up to a small test case
« The Hw always gives one

« Eventually, create more tests
* You write tests, right?
« Each should test different parts of your program
« 100% code coverage is minimum requirement

« Easy way to test union problem?
« Use you solution from parts 1-3 of the hw

How to Code: Step 5, debugging

FAQ: Is the autograder broken?

NoO, the autograder Is not broken

« If the autograder is crashing, then your program is broken

« The autograder is not a debugging tool
« So don't use it to debug
« Debugging is solely your job

« The autograder’s only obligation: report your grade score

« However, all your errors are 3 d
reported in the summary section W™ A

How to Code: Step 5, debugging

« If you followed steps 1-4, then debugging should be obvious
 Program in small, composable pieces (ie, fns, methods, classes)

« Still have big chunk of code fails, what to do?
« Narrow It down.
- Do something observable, eg, print(“made it here”), halfway
» Keep narrowing down (binary search) until you find the right line

Final notes about coding

* It's a requirement for the course
 Coding hws will likely end around hw4 (maybe)
 Remember: lowest hw score dropped

 Can still do well in the course without writing any code

Nondeterminism

Big Picture Road Map

« We ultimately want to prove:
« Regular Languages < Regular Expressions

* First, we need to show these operations are closed for reglangs:
« Union (done, last class!)
« Concatentation
* Kleene star

« To prove the last 2, we need non-determinism and NFAS!
« We know Regular Languages < DFAs (by definition)
» But are Regular Languages < NFAs???

Last time: Concatenation Operation

« Example: Want to match street addresses

212 Beacon Street

M3: CONCAT
M1: recognize M2: recognize
numbers words

75

Last time: Concatenation Closed?

THEOREM 1.26 ..

The class of regular languages is closed under the concatenation operation.

In other words, it A1 and A are regular languages then so 1s A; o As.

* Construct a new machine M?
« using DFA M, (which recognizes A,),
- and DFA M, (which recognizes A,)

Concatentation: Proof by construction

N N5
4 I 4 I
5 o 2 | ©
00 @ . ©
N is a new ©) U e U y
km.d of Tet N e A dN e A £ = empty string = no input
machine, an €t /V1 recognize A, an 2 T€COgNIZE Aa.
NFA! . .) So N can:
Want: Construction of N to recognize A; o Ay - stay in current state and
N - move to next state
4 N
/~ C N 12 N
O —— ©
e >
—O O —() oo
O O €+ @
\ O// \ O O Y,

I " P?P7?
So Is concatenation not closed??: |

NFA = Nondeterministic Finite Automata

Deterministic Nondeterministic
computation computation

e Start (o
M

{)
e

b k£ Ak Ak— £k
.. [° ° ®

\
B

* accept or reject * accept

reject

Example fig1.27 (JFLAP demo): 010110

|
(O OO

Symbol read

Nondeterministic machine can be in multiple states at once

DEFINITION 1.37

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where
A nondeterministic finite automaton 1. Qs a finite set called the states,
. 2. Y is a finite set called the alphabet,
IS a S_tuple (Q? 27 5? QUa F)a Where 3. 0: Q x X—Q is the transition function,
. . 4. qo € Q is the start state, and
1. Q 1S a4 ﬁnlte set Of states, 5. F C Q is the set of accept states.

2. ¥ is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qp € @ 1s the start state, and

5. F C (@ is the set of accept states.

Power Sets

« A power set is the set of all subsets of a set

« Example: S = {a,b,c}

 Power set of S =
- {{},{a},{b},{c},{a,b},{a,ct,{b,c},{a,b,c}}

Formal Definition of “Computation”
* DFA:

M accepts w if a sequence of states rg, 71, . .., 7, in @ exists with three conditions:

1. o — qo,
2. 0(rj,wir1) =151, fort=0,...,n—1, and
3.r, € F.

* NFA:

N accepts w it a sequence of states ro, 71, ..., Ty exists in) with three conditions:

1. o = qo, :
2. 741 € 0(ri,yit1), fori=0,...,m—1, and Requires only one.path to
3 a2 an accept state in the

- T'm € I computation tree

INn-class exercise

« Come up with a formal description of the following NFA:

DEFINITION 1.37

A nondeterministic finite automaton
is a S-tuple (@, X, 9, qo, F'), where

1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—>P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

The formal description of N; is (@, X, 6, q1, F'), where

1. Q — {913(]27(]3:@4},
2.% = {01},

3. 01s gl
1S given as 0 |

d1 {(h} {(ha (12} 0
2 | {g3} 0 {a3}
q3] {q.4})
g1 | {qa} A{aa} 0

4. ¢1 is the start state, and ;

5. F = {qa}. D& E
» 1 e 0 e 1

)

So Is concat not closed for regular langs?

e Concat produces an NFA

A language is called a regular language

if some DFA recognizes it.

e Concat iIs closed!

 Because NFAs also recognize regular languages!
« But we must prove it!

« To show concatenation is closed, we must prove
* NFAs < regular languages

How to prove the theorem: X & Y

 X&Y=“Xifandonly if Y’ =X Iff Y =X <=>Y
* Proof at minimum has 2 parts:
1. =>1if X, thenY

* l.e., assume X, then use it to prove Y
« “forward” direction

2. <=1ifY, then X
* l.e., assume Y, then use it to prove X
« “reverse” direction

Proving NFAs recognize regular langs

» Theorem:
« A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
* Easy
« We know: if A'is regular, then a DFA recognizes it.
- Easy to convert DFA to an NFA! (how?)

« <= |f an NFA N recognizes A, then A is regular.

 Hard
* |dea: Convert NFA to DFA

Need a way to convert NFA -> DFA

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, :]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

1. Q is a finite set of states,

Proof idea: . :

Each “state” of the 2. Y is a finite alphabetz N |
DFA must be a set 3. 0: Q x ¥.—>P(Q) is the transition function,
of states in the NFA 4. qo € @ 1s the start state, and

5. F C @ is the set of accept states.

Symbol read @ Start

In a DFA, all these
states at each

\ step must be
only one state

(4
S
1 So design a state in the

------------- converted DFA to be a

()
@ @ @ @ set of NFA states!
()

Next time: Convert NFA -> DFA
- LetNFAN= (@, 2, 0, qo, F')

 Then equivalent DFA M has states Q' = P(Q) (power set of Q)

* (implement for hw2)

Check-in Quiz 9/21

On gradescope

End of Class Survey 9/21

See course website

