NFA -> DFA, and NFA -> Regexp

Wed, September 23, 2020

HW?2

« Working in pairs allowed (but optional)
« Must notify me who your partner is
« See new section on course page -> Logistics

» HW1 solutions (partial) will be posted
« Only after everyone has submitted
- Volunteers? (contact me)
« Not ok: submitting someone else’s code
« Not ok: posting someone else’s code to other websites

* Includes a non-code component
« Don't forget about it!

HW1 presentations

 Paul (Python)
 Laura (Java)
* Nick (Haskell)
* Roy (C++)

See course website for survey forms
(part of your participation grade!)

97

Proving NFAs recognize regular langs

» Theorem:
« A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
« We know: if A is regular, then a DFA recognizes it.
 Convert DFA to an NFA! (easy)

« <= |f an NFA N recognizes A, then A is regular.

* Convert NFA to DFA

Symbol read @ Start

In a DFA, all these
states at each

\ step must be
only one state

(4
S
1 So design a state in the

------------- converted DFA to be a

()
@ @ @ @ set of NFA states!
()

gAY
o @D Cea XD
b

FIGURE 1.43
A DFA D that is equivalent to the NFA Ny

FIGURE 1.42
The NFA N4

Last time: Convert NFA -> DFA
- LetNFAN= (@, 2, 0, qo, F')

 Then equivalent DFA M has states Q' = P(Q) (power set of Q)

NFA -> DFA (first no empty transitions)

e Have: N = (Q,,9,qo, F)
» Want: constructa DFA M = (Q', X, ¢, qo’, F')

1. Q" =P(Q).
2. For Re Q" and a € X,

5’(R, a,) — L 5(7,.? a) For each h “do its transijcion in N”,

then combine the results into one set
reRR

3. 90" = {qo}
4. F' = {R € ()| R contains an accept state of [V}

NFA -> DFA (with empty transitions)

e Have: N = (Q,,9,qo, F)

- Want: constructa DFA M = (Q', X, ¢, qo’, F')
1. Q' = (Q) E(R) ={q| q can be reached from R by traveling

! _ along 0 or more € arrows}
2. For R € ()" and u < 2,

5’(R a) _ L E((S(?",, CL)) For each r, “do its transition in N,

then add states reachable from
reR empty transitions”, then combine

the results into one set
3. 90" = E({qo})
4. F' = {R € ()| R contains an accept state of [V}

Proving NFAs recognize regular langs

» Theorem:
« A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
« We know: if A is regular, then a DFA recognizes it.
 Convert DFA to an NFA! (easy)

« <= |f an NFA N recognizes A, then A is regular.
« Convert NFA to DFA, using NFA -> DFA algorithm we just created!

I
(Q.E.D.)

Regular Operations, Revisited

« Regular languages are closed under the following operations:
« Union
« Concatenation
» Kleene Star

» Easy to prove (by construction) using NFAs

Union

N

O

Let N; recognize A;, and N3 recognize A,.

O

O

<
©
©,

Concat

Construction of N to recognize A; o As

N
4)
4 N\ 4 N
5 O—e_ ©
—O O30 o
O O <:>f,fékf @
N) © © Y,
\ J

Kleene Star

< e)
g
eo
©
_ - J

Why do we care?

« Union, concat, and kleene star are sufficient to express
all regular languages.

* |.e., they are used to define regular expressions
DEFINITION 1.52

Say that R is a vegular expression if R is

1. a for some a in the alphabet ¥,

. €,
. 0,

. (R1 U Ry), where R; and R, are regular expressions,

. (R1 o R2), where Ry and R are regular expressions, or

QN bW N

. (R}), where R; is a regular expression.

- E.g., 0*10* = {w | w contains a single 1}

Regular Expressions are Super Useful

e Intelli)

114

Regular Expressions are Super Useful

e Visual Studio

Find and Replace
_%A Quick Find ~ | A,B Quick Replace ~

Find what:

Replace with:
Z:\l,‘

Look in:

[Current Project

(=] Find gptions
[~ Match case
[Match whole word
|| Search up

(V] Use:

[Regular EXpressions

)

[Find Next

| | Replace |

[Replace All ’

115

Regular Expressions are Super Useful

* Grep (Linux)

REP(1)

AME

General Commands Manual GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

SYNOPSIS

grep [OPTIONS] PATTERN [FILE...]
grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION

grep searches the named input FILEs (or standard input if no files are
named, or if a single hyphen-minus (-) is given as file name) for lines
containing a match to the given PATTERN. By default, grep prints the
matching lines.

In addition, three variant programs egrep, fgrep and rgrep are
available. egrep is the same as grep -E. fgrep 1is the same as
grep -F. rgrep is the same as grep -r. Direct 1invocatlion as either
egrep or fgrep is deprecated, but 1is provided to allow historical
applications that rely on them to run unmodified.

116

Regexps supported In every language

Perl
Python
Java

Every lang!

NAME

perlre - Perl regular expressions

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Qui
Table of Contents re — Regular expression operations
re — Regular expression
operations
= Regular Expression Source code: Lib/re.py
Syntax

= [odule Contents

= Regular Expression This module provides regular expression matching operations similar to those found in Perl.

java.util.regex

Class Pattern

java.lang.Object
java.util.regex.Pattern

117

Regexps are useful, in the Right Context

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE T0 SEARCH
MUST HAVE ROUOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

|

;_ I ~— IT5 HOPELESS!
Xf% ﬁ‘i IF YOURE HavIN' PERL T GOT 99 SO T UsED NowW T HAVE
PROBLEMS I FEEL PROBLEMS, FEGULAR 100 PROBLEMS.
BAD FOR YOU, SON— EXPRESSIONS,
__))))
= %(X ﬁ K E % K (%
EXPRESSIONS .

in <i, ... but also potentially bad

= "8 0

Regexps: potentially useful ...

Big Picture Road Map

« We ultimately want to prove:
« Regular Languages < Regular Expressions <

* First, we need to show these operations are closed for reglangs:
 Union (done!)
 Concatentation (done!)
 Kleene star (done!)

Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp

« <= |f a language is described by a regexp, it is regular
e Easy!
« Construct the NFA!
 See Lemma 1.55

Regexp -> NFA

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, —>©—a>©

)

)
0, -~

1 U Rs), where Ry and R; are regular expressions,

(

R1 0 Ry), where K el : ' ' r
(1 0 J2), where B ot ctions from before!
(RT), where Rl IS d 1cguLar capireod1ULL.

2.
3.
4.
5.
6.

Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp
« Hard!
* Need something new: a GNFA

« <= |f a language is described by a regexp, it is regular
e Easy!
» Construct the NFA! (Done)

GNFA = NFA with regexp transitions

« To convert to regexp, keep “ripping out” states until only 2 are left

CONVERT(G): ripping a state, and patching

@ (Ry) (Ro)* (R3) U (Ry)

after

before

Next time: CONVERT(G) function

Iy

Q (Ry) (Ro)* (R3) U (Ry)
R1 @ Rg Q’L
Roy

after

before

* If G has 2 states, then return the regexp

e Else

« “Rip” out one state to get G’
* Recursively call CONVERT(G’)

Check-in Quiz 9/23

On gradescope

End of Class Survey 9/23

See course website

