NFA -> DFA, and NFA -> Regexp

Wed, September 23, 2020



HW?2

« Working in pairs allowed (but optional)
« Must notify me who your partner is
« See new section on course page -> Logistics

» HW1 solutions (partial) will be posted
« Only after everyone has submitted
- Volunteers? (contact me)
« Not ok: submitting someone else’s code
« Not ok: posting someone else’s code to other websites

* Includes a non-code component
« Don't forget about it!



HW1 presentations

 Paul (Python)
 Laura (Java)
* Nick (Haskell)
* Roy (C++)

See course website for survey forms
(part of your participation grade!)
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Proving NFAs recognize regular langs

» Theorem:
« A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
« We know: if A is regular, then a DFA recognizes it.
 Convert DFA to an NFA! (easy)

« <= |f an NFA N recognizes A, then A is regular.

* Convert NFA to DFA
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FIGURE 1.43
A DFA D that is equivalent to the NFA Ny

FIGURE 1.42
The NFA N4



Last time: Convert NFA -> DFA
- LetNFAN= (@, 2, 0, qo, F')

 Then equivalent DFA M has states Q' = P(Q) (power set of Q)



NFA -> DFA (first no empty transitions)

e Have: N = (Q,,9,qo, F)
» Want: constructa DFA M = (Q', X, ¢, qo’, F')

1. Q" =P(Q).
2. For Re Q" and a € X,

5’(R, a,) — L 5(7,.? a) For each h “do its transijcion in N”,

then combine the results into one set
reRR

3. 90" = {qo}
4. F' = {R € ()| R contains an accept state of [V}



NFA -> DFA (with empty transitions)

e Have: N = (Q,,9,qo, F)

- Want: constructa DFA M = (Q', X, ¢, qo’, F')
1. Q' = (Q) E(R) ={q| q can be reached from R by traveling

! _ along 0 or more € arrows}
2. For R € ()" and u < 2,

5’(R a) _ L E((S(?",, CL)) For each r, “do its transition in N,

then add states reachable from
reR empty transitions”, then combine

the results into one set
3. 90" = E({qo})
4. F' = {R € ()| R contains an accept state of [V}




Proving NFAs recognize regular langs

» Theorem:
« A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
« We know: if A is regular, then a DFA recognizes it.
 Convert DFA to an NFA! (easy)

« <= |f an NFA N recognizes A, then A is regular.
« Convert NFA to DFA, using NFA -> DFA algorithm we just created!

I
(Q.E.D.)




Regular Operations, Revisited

« Regular languages are closed under the following operations:
« Union
« Concatenation
» Kleene Star

» Easy to prove (by construction) using NFAs



Union

N
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Kleene Star
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Why do we care?

« Union, concat, and kleene star are sufficient to express
all regular languages.

* |.e., they are used to define regular expressions
DEFINITION 1.52

Say that R is a vegular expression if R is

1. a for some a in the alphabet ¥,

. €,
. 0,

. (R1 U Ry), where R; and R, are regular expressions,

. (R1 o R2), where Ry and R are regular expressions, or

QN bW N

. (R}), where R; is a regular expression.

- E.g., 0*10* = {w | w contains a single 1}



Regular Expressions are Super Useful

e Intelli)
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Regular Expressions are Super Useful

e Visual Studio

Find and Replace
_%A Quick Find ~ | A,B Quick Replace ~

Find what:

Replace with:
Z:\l,‘

Look in:

[Current Project

(=] Find gptions
[~ Match case
[ Match whole word
|| Search up

(V] Use:

[Regular EXpressions

)

[ Find Next

| | Replace |

[ Replace All ’
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Regular Expressions are Super Useful

* Grep (Linux)

REP(1)

AME

General Commands Manual GREP(1)

grep, egrep, fgrep, rgrep - print lines matching a pattern

SYNOPSIS

grep [OPTIONS] PATTERN [FILE...]
grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION

grep searches the named input FILEs (or standard input if no files are
named, or if a single hyphen-minus (-) is given as file name) for lines
containing a match to the given PATTERN. By default, grep prints the
matching lines.

In addition, three variant programs egrep, fgrep and rgrep are
available. egrep is the same as grep -E. fgrep 1is the same as
grep -F. rgrep is the same as grep -r. Direct 1invocatlion as either
egrep or fgrep is deprecated, but 1is provided to allow historical
applications that rely on them to run unmodified.
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Regexps supported In every language

Perl
Python
Java

Every lang!

NAME

perlre - Perl regular expressions

@ Python » | English v|[3.8.6rc1 v |Documentation » The Python Standard Library » Text Processing Services » Qui
Table of Contents re — Regular expression operations
re — Regular expression
operations
= Regular Expression Source code: Lib/re.py
Syntax

= [odule Contents

= Regular Expression This module provides regular expression matching operations similar to those found in Perl.

java.util.regex

Class Pattern

java.lang.Object
java.util.regex.Pattern
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Regexps are useful, in the Right Context

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE T0 SEARCH
MUST HAVE ROUOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

|

;_ I ~— IT5 HOPELESS!
Xf% ﬁ‘i IF YOURE HavIN' PERL T GOT 99 SO T UsED NowW T HAVE
PROBLEMS I FEEL PROBLEMS, FEGULAR 100 PROBLEMS.
BAD FOR YOU, SON— EXPRESSIONS,
__ ) ) ) )
= %(X ﬁ K E % K (%
EXPRESSIONS .

in <i, ... but also potentially bad

= "8 0

Regexps: potentially useful ...




Big Picture Road Map

« We ultimately want to prove:
« Regular Languages < Regular Expressions <

* First, we need to show these operations are closed for reglangs:
 Union (done!)
 Concatentation (done!)
 Kleene star (done!)



Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp

« <= |f a language is described by a regexp, it is regular
e Easy!
« Construct the NFA!
 See Lemma 1.55



Regexp -> NFA

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, —>©—a>©

)

)
0, -~

1 U Rs), where Ry and R; are regular expressions,

(

R1 0 Ry), where K el : ' ' r
(1 0 J2), where B ot ctions from before!
(RT), where Rl IS d 1cguLar capireod1ULL.

2.
3.
4.
5.
6.



Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp
« Hard!
* Need something new: a GNFA

« <= |f a language is described by a regexp, it is regular
e Easy!
» Construct the NFA! (Done)



GNFA = NFA with regexp transitions

« To convert to regexp, keep “ripping out” states until only 2 are left




CONVERT(G): ripping a state, and patching

@ (Ry) (Ro)* (R3) U (Ry)

after

before



Next time: CONVERT(G) function

Iy

Q (Ry) (Ro)* (R3) U (Ry)
R1 @ Rg Q’L
Roy

after

before

* If G has 2 states, then return the regexp

e Else

« “Rip” out one state to get G’
* Recursively call CONVERT(G’)



Check-in Quiz 9/23

On gradescope

End of Class Survey 9/23

See course website



