Regular Expressions

and Inductive Proofs
Mon Sept 28, 2020

129



HW2 questions?

130



Big Picture Road Map

« We ultimately want to prove:
« Regular Languages < Regular Expressions <

* First, we need to show these operations are closed for reglangs:
 Union (done!)
 Concatentation (done!)
 Kleene star (done!)



Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp

« <= |f a language is described by a regexp, it is regular
e Easy!
» Construct the NFA! (Lemma 1.55)



Regexp->NFA (Lemma 1.55)

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, —’Q—a’©
. €
0, -~

1 U Rs), where Ry and Rs_are regular expressions,
1

o R2) Recursively callRegexp->NFA on R, and R,
"), whe to get W, for R,, and N, for R,,
then combine NFAs!




Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp
« Hard!
* Need something new: a GNFA

« <= |f a language is described by a regexp, it is regular
e Easy!
» Construct the NFA! (Lemma 1.55)




GNFA = NFA with regexp transitions

« To convert GNFA to regexp, repeatedly “rip out” states until 2 left




GNFA->Regexp(G) fn (where G is GNFA)

* If G has 2 states, return the regular expression

@ (Ry) (Ro)* (R3) U (Ry)
e Else:

« “Rip” out one state to get G’
- Recursively call GNFA->Regexp(G’)




Need to prove GNFA->Regexp(G) correct

- Specifically, need to prove Lang(G) = Lang(GNFA->Regexp(G))
* I.e., GNFA->Regexp should not change the language!



Kinds of Mathematical Proof

 Proof by construction

* Proof by contradiction

* Proof by induction {z=m=

« Use to prove properties of recursive definitions or functions




Proof by Induction

« To prove property P on all objects of a kind x

» First, prove base case (usually easy)

* Then, prove the induction step:
 Assume the induction hypothesis (IH): P(x) is true, for some x
» and use it to prove P(x+1)
« The key is x must be smaller than x+1




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA)
If G has 2 states, return the regexp
Else:
“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

>Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA)
If G has 2 states, return the regexp
Else:
“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

» Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))

> Base case: G has 2 states @ (Ry) (Ry)* (Ry) U (Ry) @
 So Lang(G) = Lang(GNFA->Regexp(G))




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA)
If G has 2 states, return the regexn
Else:
“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

» Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))

 Base case: G has 2 states @ (Ry) (Ry)* (Ry) U (Ry) @
 So Lang(G) = Lang(GNFA->Regexp(G))

>|H: Assume Lang(G) = Lang(GNFA->Regexp(G)), for any G with n states




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA)
If G has 2 states, return the regexp
Else:
“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

» Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))

 Base case: G has 2 states @ (Ry) (Ry)* (Ry) U (Ry) @
 So Lang(G) = Lang(GNFA->Regexp(G))

e |H: Assume Lang(G) = Lang(GNFA->Regexp(G)), for any G with n states

* Prove for G with n+1
> After “rip” step, we have a G’ with n states




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA) In inductive proof,
If G has 2 states, return the regexp correctness of
Else: recursive call

“Rip” out one state to get G’ comes for free

Recursively Call GNFA->Regexp(G’)
» Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))

 Base case: G has 2 states @ (Ry) (Ry)* (Ry) U (Ry) @
 So Lang(G) = Lang(GNFA->Regexp(G))

e |H: Assume Lang(G) = Lang(GNFA->Regexp(G)), for any G with n states

* Prove for G with n+1
 After “rip” step, we have a G’ with n states
> Lang(G’) = Lang(GNFA->Regexp(G’)) (by assumption)




Correctness of GNFA->Regexp(G)

GNFA->Regexp(G): (G is an GNFA)
If G has 2 states, return the regexp
Else:
“Rip” out one state to get G’
Recursively Call GNFA->Regexp(G’)

» Prove (by induction): Lang(G) = Lang(GNFA->Regexp(G))

 Base case: G has 2 states @ (Ry) (Ry)* (Ry) U (Ry) @
 So Lang(G) = Lang(GNFA->Regexp(G))

e |H: Assume Lang(G) = Lang(GNFA->Regexp(G)), for any G with n states

* Prove for G with n+1
 After “rip” step, we have a G’ with n states
 Lang(G’) = Lang(GNFA->Regexp(G’)) (by assumption)
» Now just need correctness of “rip” step




GNFA->Regexp: “rip” step correctness

@ (Ry) (Ry)* (R3) U (Ry)

after

* Must prove:
 Every string accepted before is accepted after

e 2 cases
 String does not go through qrip
» Acceptance unchanged
before > String goes through grip
« Acceptance unchanged?




Thm: A lang I1s regular iff some regexp describes it

« => |f a language is regular, it is described by a regexp
« Hard!
» Use GNFA->Regexp(G) to convert GNFA to regexp!

- <= If a language Is described by a regexp, It is regular
e Easy!
* Construct the NFA!

I
DONE!

Now we may use regular expressions to
to represent regular langs.



Regexps make some closure operations
easler to prove, via Induction!




Regexp Is Inductive definition;
constructed from smaller regexps

DEFINITION 1.52

Say that R is a regular expression it R is

1. a for some a in the alphabet 3.
Smaller regular

2. g, :

3. 0, expressions

4. (R, U Ry), where R; and Ry are regular expressions,
Z' So any Inductive proof of regular

languages can just follow this definition!




Homomorphisms: closed under reg langs

A bomomorphism is a function f: X—— 1 from one alphabet to another.

. extend f to operate on strings by defining

fw) = f(wr)f(w2) - flwn),

where w = wiws - - w, and each w; € .

- extend f to operate on languages by defining f(A) = {f(w)| w € A}

e Think like a secret decoder!
 E.g,iff(x)->c, f(y) -> a, f(z) -> t, then “xyz” -> “cat”

 Prove: homomorphisms are closed under regular langs
« E.g, if Aisregular, then f(A) is regular




Homomorphisms closed for reg langs

 Proof by construction
 If lang L is regular, then DFA M recognizes It.
« Create M’ from M such that all transitions use new alphabet
* (Details left to you to work out)

 Proof by induction:
 If lang L is regular, then some regexp R describes it.



Proof by Induction

« To prove property P on all objects of a kind x

» First, prove base case (usually easy)

* Then, prove the induction step:
 Assume the induction hypothesis (IH) P(x) is true, for some x
» and use it to prove P(x+1)
« The key is x must be smaller than x+1




Homomorphisms closed: inductive proof

DEFINITION 1.52

Say that R is a rvegular expression it R is

1. a for some a in the alphabet ¥, 3 base cases

&, IH: assume true for smaller R1 (and R2),
0l l.e., applying homomorphism produces regular lang

U R2 ) 11?]‘\!—"'1"!3 Da ‘]‘I"‘IA pr‘\ ATA *r'ﬁrrn]qr' ﬁVﬂT‘F‘QC’iﬁﬂQ

(R1 : .
(Ry o Ry), Now we just need to show closure of union,
(R

' concat, and star operations for reg langs ©

2.
3.
4.
5.
6. ), where K; 1s a regular expression.



Next Time: Non-regular languages

* In general, we have many ways to show a language is regular
« Construct DFA or NFA (or GNFA)
« Create a regular expression

« But how to show a language is not regular?

 E.g., how do we know that XML Is non-regular???

« Hint: The Pumping Lemmal



Check-in Quiz 9/28

On gradescope

End of Class Survey 9/28

See course website



