CS420
Context-Free Languages (CFL)

Monday, October 5, 2020

HW3 Questions?

HW?2: For all langs, DFA recog <> NFA recog

* DFA => NFA
* Let §,, be DFA’s transition fn
« Then equiv NFA’s transition fn is 8 ., (q,x) = {64.(q,X)}

« NOTE: cannot just say DFA = NFA (the formal defs are different)
« Must explain how

* NFA => DFA
- By Thm 1.39

 Alternate answer: DFA < reg lang, and reg lang <> NFA

Can a DFA/NFA “do computation”?
% ={[5]. [1].). [1]}

D = {w € 33| the top row of w is a larger number than is the bottom row}

Consider each row to be a binary number

* Is language D regular?
* |.e., can an DFA/NFA “do” this (greater than) computation?

« Machine M recognizing D:
» 3 states: maybe, top-row-greater, bot-row-greater
 Start state: maybe
* Accept states: top-row-greater

- Transitions (for each pair of bits, starting in maybe):
« If top bit greater, go to top-row-greater, and stay there
* If bot bit greater, go to bot-row-greater, and stay there
* Else stay in maybe state

HTML is a language of sufficient complexity that it cannot be parsed by regular

Reg EX match Open tags except XHTML Self_cont expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every

time you attempt to parse HTML with regular expressions, the unholy child weeps

Asked 10 years, 10 months ago Active 1 month ago Viewed 2.9m times the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with
regex summons tainted souls into the realm of the living. HTML and regex go
| need to match all of these opening tags: together like love, marriage, and ritual infanticide. The <center> cannot hold it is too

late. The force of regex and HTML together in the same conceptual space will

destroy your mind like so much watery putty. If you parse HTML with regex you are
1 553 <p> giving in to Them and their blasphemous ways which doom us all to inhuman toil for

 the One whose Name cannot be expressed in the Basic Multilingual Plane, he

comes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,
your psyche withering in the onslaught of horror. Reg?x-based HTML parsers are
the cancer that is killing StackOverflow it is foo late it is too late we cannot be saved
the trangession of a child ensures regex will consume all living tissue (except for

HTML which it cannot, as previously prophesied) dear lord help us how can anyone
survive this scotirna nieina ranay tn nareca HTMI hac dnnmead hiimanitu tn an eternity

But not these:

<hr class="foo" />
of dread torture and security holes using regex as a tool to process HTML

You can't parse [)(]HTML with regex. Because HTML can't be parsed by regex. establishes a breach between this world and the dread realm of éorrupt entities (like

. SGML entities, but r I f the world of :
Regex is not a tool that can be used to correctly parse HTML. As | have answere entities, but more corrupt) a mere glimpse of the world of regex parsers for
HTML will instantly transport a programmer’'s consciousness into a world of

HTML-and-regex questions here so many times before, the use of regex will not ceaseless screaming, he comesthe-pestilentslithy regex-infection will devour your
allow you to consume HTML. Regular expressions are a tool that is insufficiently HTML parser, application and existence for all time like Visual Basic only worse he
sophisticated to understand the constructs employed by HTML. HTML is nota ¢omes he comes do not fight he comss, his unholy radiarice destraying al

lar | dh th db | . R enhghtenment HTML tags leaking feom Jyour eyes/’hke liquid pain, the song of
regular language an €nce cannot be parsed Dy regular expressions ~egex refgular expresaen—pamng—wnl extinguish the voices of mortal man from the sphere

queries are not equipped to break down HTML into its meaningful parts. so man)/ cap see it can you see jt it it is beautiful the f inal snuf fing of the lies of Man ALL IS

times but it is not getting to me. Even enhanced irregular regular expressions as LOST ALLIS LOST the'pony he comes he comes-he-cormes th@ichor,permeajes

all IE’IY FACE MY FACE °h god—r{p WOtNQOOO NO stop the an-_g!‘ S gre not real
used by Perl are not up to the task of parsing HTML. You will never make me cre 2R GO |s ’TOJ\I-y THEPONY I-lﬁbéﬁl%

Have you tried using an XML parser instead?

The other side of the aresument

3281

+50

While arbitrary HTML with only a regex is impossible, it's sometimes appropriate to use them for
parsing a limited, known set of HTML.

If you have a small set of HTML pages that you want to scrape data from and then stuff into a
database, regexes might work fine. For example, | recently wanted to get the nhames, parties,
and districts of Australian federal Representatives, which | got off of the Parliament's web site.
This was a limited, one-time job.

Regexes worked just fine for me, and were very fast to set up.

share edit follow flag edited Sep 19 '19 at 15:30 community wiki
10 revs, 10 users 36%
Kaitlin Duck Sherwood

Also, scraping fairly regularly formatted data from large documents is going to be WAY faster with
judicious use of scan & regex than any generic parser. And if you are comfortable with coding
regexes, way faster to code than coding xpaths. And almost certainly less fragile to changes in what
you are scraping. So bleh. — Michael Johnston

@MichaeldJohnston "Less fragile"? Almost certainly not. Regexes care about text-formatting details
than an XML parser can silently ignore. Switching between &foo; encodings and CDATA
seclons using an H 1 iviL minimer 1o remove all whitespace in your document that the browser
doesn't render? An XML parser won't care, and neither will a well-written XPath statement. A regex-
based "parser”, on the other hand... — Charles Duffy

So XML i1s not regular? What 1s 1t?

* |It's a context-free language (sort of)!
» What's a context-free language (CFL)?

 How do you parse a CFL?

Context-Free Gramamrs (CFG)

A Context-Free Grammar (CFG)

a context-free grammar, which we call G4

terminals
Top variable is
Start variable A — 0A1
A — B Substitution rules

Variables
(also called a B — #

nonterminal)

(a.k.a., productions)

terminals (analogous to DFA’s alphabet)

Pytyon Syntax Specified with a CFG

https://docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps Llisted at
https://devguide.python.org/grammar/

Start symbols for the grammar:
single_input is a single interactive statement;
file input i1s a module or sequence of commands read from an input file;
eval 1input is the 1input for the eval() functions.
func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input 1is followed by extra NEWLINE!
NB: due to the way TYPE COMMENT 1is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file _input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER
1

Java Syntax Specified with a CFG

https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
Chapter 18. Syntax

This chapter presents a grammar for the Java programming language.

The grammar presented piecemeal in the preceding chapters (§2.3) is much better for exposition, but it is not well suited as a basis
for a parser. The grammar presented in this chapter is the basis for the reference implementation. Note that it is not an LL(1)
grammar, though in many cases it minimizes the necessary look ahead.

The grammar below uses the following BNF-style conventions:
» [x] denotes zero or one occurrences of x.
» {x} denotes zero or more occurrences of x.

* (x| y) means one of either x or y.

Identifier:
IDENTIFIER

QualifiedIdentifier:
Identifier { . Identifier }

QualifiedIdentifierlList:
QualifiedIdentifier { , QualifiedIdentifier }

A Context-Free Grammar (CFG)

a context-free grammar, which we call G4

terminals
Start variable A — 0A1
. A — B Substitution rules
(;’l?:';?lleedsa B _ # (a.k.a., productions)

nonterminal)
terminals (analogous to DFA’s alphabet)

A CFG generates a string, by repeatedly substituting variables:

A = 0A1 = 00A11 = 000A111 = 0008111 = 000#111
This sequence is called a derivation

Formal Definition of a CFG

V ={A B},¥ ={0,1,#}, S = A, and R is
A — 0A1
A— B

B — #
A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. Y is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable and a
string of variables and terminals, and

4. S € V is the start variable.

Formal Definition of a Derivation

If u, v, and w are strings of variables and terminals, and A — w is a rule of the
grammar, we say that uwAv yields uwv, written uAv = uwwv. Say that u derives v,

written u = v, if u = v or if a sequence w1, uo, . . ., u exists for k > 0 and
U= U] = U2 = ... = U = .

The language of the grammar is {w € ¥*| S = w}.

Definition of context-free language (CFL)

Any language that can be generated by some
context-free grammar is called a context-free language

A Context-Free Grammar (CFG)

a context-free grammar, which we call G,

L(G:)is {o™#1™| n > 0
A — 0A1 (G1) s { n =0}

A— B
B — #

« Remember: in Ch1 we proved {0"1"™| n > 0} not regular
e It's a CFL!

* If we replace: 0 -> “<tag>”, 1 ->“</tag>”, it looks like ...
« XML resembles a CFL!

Analogies

Regular Language Context-Free Language (CFL)

Regular Expression (Regexp) Context-Free Grammar (CFG)
Regexp describes a Reg lang CFG describes/generates a CFL

19

In-class exercise: derivations

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)Xx(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a

« Come up with a derivation (a sequence of substs) for string:
*d+dXd

A String Can Have Multiple Derivations
(EXPR) — (EXPR)+(TERM) | (TERM)
—

(TERM) TERM) X (FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a
* EXPR => * EXPR =>
* EXPR + TERM => * EXPR + TERM =>
* EXPR + TERM x FACTOR => * TERM + TERM =>
* EXPR + TERM xa=> * FACTOR + TERM =>
*a+ TERM

RIGHTMOST DERIVATION LEFTMOST DERIVATION

Derivations and Parse Trees

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

A derivation may also be represented as a parse tree

i
‘? Parse Tree
A gives

p “meaning”
| to a string
B
|

O 0 0 # 1 1 1

Multiple Derivations, Single Parse Tree

* EXPR => « EXPR =>

« EXPR + TERM => EXPR + TERM =>

* TERM + TERM => * EXPR + TERM x FACTOR =>
« FACTOR + TERM => * EXPR + TERM xa=>

* a + TERM /
(TERM) \
Always use (FACTéR) (FACTOR)
leftmost
derivation

Parses may be ambiguous

grammar Gf:

(EXPR) — (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

(EXPR) (EXPR)

/ N\ /

(EXPR) (EXPR) (EXPR) (EXPR)

e\ N\)
(EXPR) | (EXPR) (EXPR) | (EXPR)
(\ / \

a + a X a a + a X a

Ambiguity Definition

DEFINITION 2.7

A string w is derived ambiguously in context-free grammar G if
it has two or more different leftmost derivations. Grammar G is
ambiguous if it generates some string ambiguously.

l.e., a string can have multiple parse trees!

Real-life Ambiguity (“Dangling” else)

« What is the result of this C program?
« if (1) if (0) printf("a"); else printf("2");

if (1) if (1)
if (0) if (0)
printf("a"); VS printf("a");
else else
printf("2"); printf("2");

Ambiguous grammars are bad because they give
multiple meanings to the same string (program).

But there’'s no guaranteed way to create
unambiguous grammar (just have to think about it)

Designing Grammars

* Think about what you want to “link” together

* E.g.,, XML
« ELEMENT - <TAG>CONTENT</TAG>
« Start and end tags are “linked”

» Start with small grammars and then combine (just like FSMs)

Designing Grammars 2

» Start with small grammars and then combine (just like FSMs)
- To create grammar for lang {0"1"|n >0}U{1"0"|n >0}
« “|" =*“Or”
* First create grammar for lang {0”1”\ n > 0} .
Sl — 0511 ‘ E
» Then create grammar for lang {1"0™| n > 0}:
So — 1550 ‘ g
» Then combine: ¢ _ Sq | So
51 — 0511 | €
SQ — 1520 | €

Designing Grammars 3

» Start with small grammars and then combine (just like FSMs)
° “l" — “Or"
» “Concatenate” S; and S,: S — S1.55

» “Repetition”: S" — 5’5 ‘ g

In-class exercise: Designing grammars

alphabet X 1s {0,1}
{w| w starts and ends with the same symbol }
*S->0A0| 1A1 | ¢

*A->CA|c¢
*C->0]1

Check-in Quiz 10/5

On gradescope

End of Class Survey 10/5

See course website

