Pushdown Automata (PDAs)

Monday, October 7, 2020
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HW3 Questions?



HW4 out

e HW4 due in 2 weeks

« HW3 due Sunday 11:59pm EST



Last time: Designing Grammars

» Start with small grammars and then combine (just like FSMs)
o “OI’": S _:) Sl ‘ SQ
» “Concatenate™ S — 5155

- “Repetition”:  S" — S'S; | €



In-class exercise: Designing grammars

alphabet X 1s {0,1}

{w| w starts and ends with the same symbol }

e S->0C0 | 1C’1 | S “string starts/ends with same symbol, middle can be anything”

e C'->CC | E “all possible terminals, repeated (ie, all possible strings)”

*C->0]1

“all possible terminals”



Analogies

Regular Language Context-Free Language (CFL)

Regular Expression (Regexp) Context-Free Grammar (CFG)
Regexp describes a Reg lang CFG describes/generates a CFL
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Analogies

Regular Language Context-Free Language (CFL)

Regular Expression (Regexp) Context-Free Grammar (CFG)
Regexp describes a Reg lang CFG describes/generates a CFL
TODAY:
Finite automaton (FSM) Push-down automaton (PDA)

FSM recognizes a regular lang PDA recognizes a CFL
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Analogies

Regular Expression (Regexp)
Regexp describes a Reg lang

Finite automaton (FSM)
FSM recognizes a regular lang
DIFFERENCE:

Regular lang defined via FSM
Must prove Regexp < Reg lang

Context-Free Grammar (CFG)
CFG describes/generates a CFL
TODAY:

Push-down automaton (PDA)
PDA recognizes a CFL
DIFFERENCE:

CFL defined via CFG
Must prove PDA <~ CFL




Pushdown Automata (PDA)

« PDA = NFA + a stack

NFA
states

J

stack

%N‘{‘.N<—I
W
pJ

Input



A (Mathematical) Stack Specification

» Access to top element of stack only
« Operations: push, pop

\é‘; Last In - First Out /
Push Pop

o)

iiiiiiiiiii

Data Element

Data Element Data Element

* (What could be a possible code representation?)



Pushdown Automata (PDA)

« PDA = NFA + a stack

e Infinite memory

« But only read/write top loc
« Push/pop

NFA
states

J

stack

%N%ﬂ«—'
W
n1

Input



A Example PDA 10"1"[n =0}

Read
input

0,€—0
E,E— $
_} q2 “read 0, push 0 (repeat)”

“when machine starts,
don’t read input, 1,0—€& “read?1, pop 0 (repeat)”

don't pop, and

push empty stack symbol” 1,0—>€
-li
€,$3—€

“accept when stack is empty”

Pop Push | ($ = special symbol, indicating empty stack)




Formal Definition of PDA

A pushdown automaton is a 6-tuple (Q, 3,1, 9, qo, I'), where Q, %,
I, and F are all finite sets, and

1. Q) 1s the set of states,

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4. 0: Q x X. x [.—>P(Q x I.) is the transition function,
5. qo € @ is the start state, and

6. F' C Q is the set of accept states.



In-class example

Input | Pop | Push
0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€.e$ > (2 ', and F are all finite sets, and
1

. @ is the set of states,
1,0—) = |nput 2. Y is the input alphabet,
2

_ Pop Push
I is the stack alphabet,

1,0—¢€ . 0: QX Y. x TE=P(Q x I.) is the transition function,

4
q3 5. qo € @ is the start state, and
6. F' C (@ is the set of accept states.

€,$—€



Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $1|0 $ € I Pop
q1 {(q27 )} Push
¢ {(42,0)} {(gs.€)} 2 4
Input | Pop | Push q3 1 {(93,8)} 3 {(q4a€)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.




Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $1|0 $ € I Pop
qd1 {(q23 $)} Push
q2 {(42.0) {(g3,€)} 2 4
Input | Pop | Push a3 1 {(g3,€)} 3 {(qs,€)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.




Q=1{q1,92,q3,94},

> = {0,1},
I ={0,$},

= {Qh qfl}a and

§ 1s given by the following table, wherein blank entries signify (0.

Input | Pop | Push

Input: 0 1 € -{ Input
Stack: g 0 $(e|0 $ € I Pop
g1 {(q23 $)} Push
¢ {(¢2.0)} {(g3,€)} 2 4
q3 1 Jl(q3=€)} 3 {(q4a€)}
da

£—0
g,e—$ QD
1,05€
1,0 €
‘ £,$—¢€

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2. X s the input alphabet, Pop oush
3. is the stack alphabet,
4. 0: QX . x T#&E==P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.



Q =1{4q1,92,93, 94},
> = {0,1},

I'= {0, $},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $1|0 $ € I Pop
qd1 {(q23 $)} Push
¢ {(¢2,0)} {(g3,€)} 2 4
Input | Pop | Push q3 1 {(QB, €)J 3 {(q4a€)}
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
E,e—$ .
> Q9 ', and F are all finite sets, and

1. Q is the set of states,
1,03€ Input | 2. X is the input alphabet
3

_ "| Pop Push
I is the stack alphabet,

1,0—¢€

4. 0: QX . x T#&E==P(Q x I.) is the transition function,
: €,$—¢ 43 5. qo € Q is the start state, and
]
6

. F' C Q is the set of accept states.




Q =1{4q1,92,93, 94},
> = {0,1},

' ={0,$},
F={q1,94}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $1|0 $ € I Pop
qd1 {(q23 $)} Push
g2 {(g2.0)} {(g3,€)} 2 4 5
Input | Pop | Push q3 1 {(g3.€)} 3 1(94,€);
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
€,€239 > ', and F are all finite sets, and

1. Q is the set of states,
;
E,$—¢€

1,056 Input z Y. is the input alphabet, Pop oush

I is the stack alphabet,
1,0—¢€ 4. §: Q X . x T P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.



Pushdown Automata (PDA)

Input | Pop | Push

 PDA = NFA + a stack 4, €28 (0

* Infinite memory
 But only read/write top location 1,0—€

« Push/pop
04 €,$—¢€ &

0,€—0

1,0—¢€

 Want to prove: PDA < CFG

* Then to prove that a language is a CFL, we can either:
* Create CFG, or
* Create PDA



CFL <~ PDA



A lang 1s a CFL Iff some PDA recognizes it

« => |f CFL, then PDA recognizes it
- (Easier)
* All CFLs have CFG describing it (definition of CFL)
 Convert CFG -> PDA

<= |f PDA recognizes, then CFL



CFG -> PDA

» Construct PDA from CFG such that:
« PDA accepts input string only if the CFG can generate that string

* Intuitively, PDA nondeterministically tries all rules

“push start variable onto stack”

“if variable on stack top, pop and
nondet. replace with every right-side”

e, A—-w forrule A—w

a,a—e for terminal a

“if terminal on stack top, read input and pop”




Example CFG -> PDA

S —alb|b
T — Tale

“pop S and replace with rule right-side”

e,5—b )O€,€—>T)O gy |
g, [—a ’O e, e—1T l

g,S—b
g, l—e
a,a—€




Example CFG -> PDA

S — alb|b
T — Tale

e,S5—b )O€,€—>T)O £,€—a
g, [—a )O 2 e l

g,S—h
e, T—e
a,a—e€
b,b—e




Example CFG -> PDA

S — alb|b
T — Tale

e,5—b )O€,€—>T)O g,e—a
g, [—a ’O e, e—1T l

g,S5—b
e, T—e
a,a—e€

b,b—e
“if terminal on stack top, read input and pop”




A lang 1s a CFL Iff some PDA recognizes it

« => |f CFL, then PDA recognizes it
- (Easier)
* All CFLs have CFG describing it (definition of CFL)
« Convert CFG -> PDA (DONE!)

<= |f PDA recognizes, then CFL
 (Harder)
 Need PDA -> CFG



PDA -> CFG: Step 1

Before converting PDA to CFG, modify it (without changing its lang) SO :

1. It has a single accept state, gaccept-
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

(confirm this to yourselves)



PDA P -> CFG G: substitution rules

- For every pair of states p, g: add grammar variable A
P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

« Apq represents “all possible inputs read going from state p to q”

* Add rules: A, 2 A A, for every state r

« “All possible strings when going from p to q =
 All possible strings going from p to r, concatentated with
 All possible strings going from r to q”

« We still need rules that produce terminals!
* The key: pair up stack pushes and pops (essence of CFL)



PDA P -> CFG G: generating strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

* The key: pair up stack pushes and pops (essence of CFL)

if 6(p, a,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G



PDA P -> CFG G: generating strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

* The key: pair up stack pushes and pops (essence of CFL)

if 6(p,a,€) contains (7, u) and (s, b, u) contains (g, €),

put the rule A4,,«=aA,sbin G



PDA P -> CFG G: generating strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

* The key: pair up stack pushes and pops (essence of CFL)

if 6(p, a,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G



A lang is a CFL < A PDA recognizes it

« => |f CFL, then PDA recognizes it
* All CFLs have CFG describing it (definition of CFL)
* Convert CFG -> PDA

<= |f PDA recognizes, then CFL
« Convert PDA -> CFG B



Regular languages are CFLs, prove 3 ways

* NFA -> PDA (with no stack moves) -> CFG
e Just now

 DFA -> CFG
» Textbook page 107

* Regexp -> CFG
« HW4

context-free

languages

regular

languages



Check-in Quiz 10/7

On Gradescope

End of Class Survey 10/7

See course website

Remember, no class next Monday!



