Pushdown Automata (PDAs)

Monday, October 7, 2020

HW3 Questions?

HW4 out

• HW4 due in 2 weeks

• HW3 due Sunday 11:59pm EST

Last time: Designing Grammars

• Start with small grammars and then combine (just like FSMs)

• "Or":
$$S \rightarrow S_1 \mid S_2$$

- "Concatenate": $S oup S_1S_2$
- "Repetition": $S' o S'S_1 \mid arepsilon$

In-class exercise: Designing grammars

```
alphabet \Sigma is \{0,1\}
```

 $\{w | w \text{ starts and ends with the same symbol}\}$

• S ->
$$0C'0 | 1C'1 | \epsilon$$

"string starts/ends with same symbol, middle can be anything"

"all possible terminals, repeated (ie, all possible strings)"

"all possible terminals"

Analogies

Regular Language	Context-Free Language (CFL)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
Regexp <u>describes</u> a Reg lang	CFG <u>describes</u> / <u>generates</u> a CFL

Analogies

Regular Language	Context-Free Language (CFL)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
Regexp <u>describes</u> a Reg lang	CFG <u>describes</u> / <u>generates</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
FSM <u>recognizes</u> a regular lang	PDA <u>recognizes</u> a CFL

Analogies

Regular Language	Context-Free Language (CFL)
Regular Expression (Regexp)	Context-Free Grammar (CFG)
Regexp <u>describes</u> a Reg lang	CFG <u>describes</u> / <u>generates</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
FSM <u>recognizes</u> a regular lang	PDA <u>recognizes</u> a CFL
DIFFERENCE:	DIFFERENCE:
Regular lang defined via FSM	CFL defined via CFG
Must prove Regexp ⇔ Reg lang	Must prove PDA ⇔ CFL

Pushdown Automata (PDA)

• PDA = NFA + a stack

A (Mathematical) Stack Specification

- Access to top element of stack only
- Operations: push, pop

• (What could be a possible code representation?)

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - But only read/write top loc
 - Push/pop

A Example PDA $\{0^n 1^n | n \ge 0\}$

Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

In-class example

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- Input
- 2. Σ is the input alphabet, Pop Push
 - 3. Γ is the stack alphabet,
 - **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
 - **5.** $q_0 \in Q$ is the start state, and
 - **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\}, \text{ and }$

$$F = \{q_1, q_4\}, \text{ and }$$

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0, \$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - But only read/write top location
 - Push/pop

Input

Pop

Push

- Want to prove: PDA ⇔ CFG
- Then to prove that a language is a CFL, we can either:
 - Create CFG, or
 - Create PDA

CFL ⇔ **PDA**

A lang is a CFL iff some PDA recognizes it

- => If CFL, then PDA recognizes it
 - (Easier)
 - All CFLs have CFG describing it (definition of CFL)
 - Convert CFG -> PDA
- <= If PDA recognizes, then CFL

CFG -> PDA

- Construct PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string

• Intuitively, PDA <u>nondeterministically</u> tries all rules

Example CFG -> PDA

Example CFG -> PDA

Example CFG -> PDA

A lang is a CFL iff some PDA recognizes it

- => If CFL, then PDA recognizes it
 - (Easier)
 - All CFLs have CFG describing it (definition of CFL)
 - Convert CFG -> PDA (DONE!)
- <= If PDA recognizes, then CFL
 - (Harder)
 - Need PDA -> CFG

PDA -> CFG: Step 1

Before converting PDA to CFG, modify it (without changing its lang) SO:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

(confirm this to yourselves)

PDA P -> CFG G: substitution rules

• For every pair of states p, q: add grammar variable A_{pq}

```
P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\}) variables of G are \{A_{pq} | p, q \in Q\}
```

- Apq represents "all possible inputs read going from state p to q"
- Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for every state r
 - "All possible strings when going from p to q =
 - All possible strings going from p to r, concatentated with
 - All possible strings going from r to q"
- We still need rules that produce terminals!
- The key: pair up stack pushes and pops (essence of CFL)

PDA P -> CFG G: generating strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of CFL)

if
$$\delta(p, a, \varepsilon)$$
 contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: generating strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of CFL)

if
$$\delta(p, a, \varepsilon)$$
 contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: generating strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of CFL)

if
$$\delta(p, a, \varepsilon)$$
 contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A lang is a CFL \Leftrightarrow A PDA recognizes it

- => If CFL, then PDA recognizes it
 - All CFLs have CFG describing it (definition of CFL)
 - Convert CFG -> PDA
- <= If PDA recognizes, then CFL
 - Convert PDA -> CFG

Regular languages are CFLs, prove 3 ways

- NFA -> PDA (with no stack moves) -> CFG
 - Just now
- DFA -> CFG
 - Textbook page 107
- Regexp -> CFG
 - HW4

Check-in Quiz 10/7

On Gradescope

End of Class Survey 10/7

See course website

Remember, no class next Monday!