Non-Context-Free Languages and Turing Machines

Mon, October 19, 2020

HW4 Questions?

Flashback: Pumping Lemma for Reg Langs

• The Pumping Lemma describes how strings repeat

• Regular lang strings can only repeat using Kleene pattern

• But <u>substrings</u> are independent!

A non-regular language

$$\{\mathbf{0}^n_{\mathbf{1}}\mathbf{1}^n_{\mathbf{1}}|\ n\geq 0\}$$

Kleene can't express this pattern: 2nd part depends on (length of) 1st part

What about context-free languages?

Repetition and Dependency in CFLs

Grammar links first and second part

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

How Can Strings in CFLs Repeat?

• Strings in regular languages repeat states

• Strings in CFLs repeat subtrees in the parse tree

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the

conditions

Now there are two pumpable parts.
But they must be pumped together!

- **1.** for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If *A* pumping length) where if divided into three pieces, *s*

- 1. for each $i \geq 0$, $xy^i z$
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

: p (the may be

Non CFL example $D = \{ww | w \in \{0,1\}^*\}$

- Previous: Showed D nonregular; unpumpable string s: $0^p 10^p 1$
- Now: But s can be pumped according to CFL pumping lemma:

2.
$$|vy| > 0$$
, and

Non CFL example $D = \{ww | w \in \{0,1\}^*\}$

Choose another string s:

If vyx is all in first or second half, then any pumping will break the match

$$\mathsf{O}^p\mathsf{1}^p\mathsf{O}^p\mathsf{1}^p$$

So vyx must straddle the middle But any pumping still breaks the match

- CFL Pumping Lemma conditions: 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

 - **2.** |vy| > 0, and
 - 3. $|vxy| \le p$.

Non CFL example $D = \{ww | w \in \{0,1\}^*\}$

• Previously: Showed D is not regular

• Just Now: *D* is not context-free either!

But that means ...

- We previously said XML sort of looks context-free:
 - ELEMENT \rightarrow <TAG>CONTENT</TAG> But these arbitrary TAG strings must match!
 - TAG \rightarrow any string
 - CONTENT → any string | ELEMENT
- Meaning XML also looks like: $D = \{ww | w \in \{0,1\}^*\}$
- So XML is not context-free either!
 - Note: HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so we can hardcode them into a finite number of rules.
- In practice:
 - XML is <u>parsed</u> as a CFL, with a CFG
 - Then matching tags checked with a more powerful machine ...

A New Hypothetical Machine

Blank space

 M_1 accepts if input is in language $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

memory where input is located

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Turing Machines (TMs)

Automata vs Turing Machines

- Turing Machines can read and write to input "tape"
- The read-write "head" can move arbitrarily left or right
- The tape is infinite

A Turing Machine can accept/reject at any time

DEFINITION 3.5

Call a language *Turing-recognizable* if some Turing machine recognizes it.

Turing Machines: Formal Definition

DEFINITION 3.3

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box
- **3.** Γ is the tape alphabet, where $\Box \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in \mathcal{C}$ read le st; write to move
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Formal Turing Machine Example

 $B = \{ w \# w | \ w \in \{ \text{0,1} \}^* \}$

Read char (0 or 1), cross it off, move head R(ight) Move Right until # Move Right until # $0,1 \rightarrow R$ $0,1\rightarrow R$ $x \rightarrow R$ Accept if all $\# \rightarrow R$ $\# \rightarrow R$ crossed out $x\!\to\!\! R$ $x \rightarrow R$ $q_{\rm accept}$ Cross off same char Move Left $0,1,x \rightarrow L$ until x $x \rightarrow R$ 120

Turing Machine: Informal Description

• M_1 accepts if input is in language $B = \{w\#w|\ w \in \{0,1\}^*\}$

M_1 = "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not if no # is found, reject. Cross off symbols as they will (mostly) track of which stick to informal descriptions of
- 2. When all symbols to Turing machines, n crossed off, check for any remaining like this one at of the #. If any symbols remain, reject; otherwise, cept."

TM Informal Description: Caveats

- TM informal descriptions are not a "do whatever" card
 - They must be sufficiently precise to communicate the formal tuple
- Input must be a string, written with chars from finite alphabet
- An informal "step" represents sequence of formal transitions
 - I.e., some **finite** number of transitions
 - It cannot run forever
 - E.g., can't say "try all numbers" as a "step"

Non-halting Turing Machines (TMs)

- A DFA, NFA, or PDA always halts
 - Because the (finite) input is always read exactly once

THIS IS A
VERY
IMPORTANT
SLIDE

- But a Turing Machine can run forever
 - E.g., the head can move back and forth in a loop
- A <u>decider</u> is a Turing Machine that always halts.

DEFINITION 3.6

Call a language *Turing-decidable* or simply *decidable* if some Turing machine decides it.

Formal Definition of an "Algorithm"

• An <u>algorithm</u> is equivalent to a Turing-decidable Language

Check-in Quiz 10/19

On Gradescope

End of Class Survey 10/19

See course website