Non-Context-Free Languages

and Turing Machines
Mon, October 19, 2020

104

HW4 Questions?

Flashback: Pumping Lemma for Reg Langs

« The Pumping Lemma describes how strings repeat

« Regular lang strings can only repeat using Kleene pattern
* But substrings are independent! - N

Repeating pattern v

| After repeat
* A non-regular language N\ol0)
n4n , ': 1‘
{O 1 | n = 0} Before repeat |~z "
Kleene can't express this pattern: e
2nd part depends on (length of) 1st part _______|Independent J

» What about context-free languages?

Repetition and Dependency in CFLs

Grammar links first and second part

Repetition [0{4\1 {0"#1"|n > 0}
= =

B — # i

A

A

A

5

5 0 0 #

A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

1

1

1

107

How Can Strings in CFLs Repeat?

e Strings In regular languages repeat states

e Strings In CFLs repeat subtrees in the parse tree

Linked parts

-

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of

length at least n. then s mav be divided into five pieces s = uvxyz satisfying the
P Now there are two pumpable parts.
conditions But they must be pumped together!

1. for each ¢ > 0, wvtzy'z € A,
2. |vy| > 0, and

3. |vxy| < p. Pumping lemma If A
pumping length) where if
divided into three pieces, «

- p (the
may be

1. for each i > 0, zy'z
2. |y| > 0, and
3. [zy| < p.

Non CFL example D = {ww|w € {0,1}*}

 Previous: Showed D nonregular; unpumpable string s: 0P10P1
« Now: But s can be pumped according to CFL pumping lemma:

oF1 oP1
r— —

e —
000---000 O 1 O 000---0001
N, e o o o e e

U Ve T_>Y 2

String withy pumped v and y (together) still in D
« CFL Pumping Lemma conditions:1 1. for each ¢ > 0, uwv'xy’z € A,

V12, |vy| > 0, and
3. |vzy| < p.

Non CFL example D = {ww|w € {0,1}*}

« Choose another string s:

If vyx is all in first or second half, the
any pumping will break the match

e W

0P1PQOP1P
\e— —

So vyx must straddle the middle
But any pumping still breaks the match x

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and
3. [vzy| < p.

Non CFL example D = {ww|w € {0,1}*}

* Previously: Showed D Is not regular

e Just Now: D Is not context-free either!

But that means ...

« We previously said XML sort of looks context-free:
* ELEMENT - <TAG>CONTENT</TAG> But these arbitrary TAG strings must match!
* TAG = any string
* CONTENT - any string | ELEMENT

» Meaning XML also looks like: D = {ww| w € {0,1}*}

* SO0 XML is not context-free either!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
e so we can hardcode them into a finite number of rules.

* In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked with a more powerful machine ...

A New Hypothetical Machine

Blank space

M; accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w: memory where input is located
1. Zig-zag across the tape to corresponding positions on either —

011000#011000u ...

x11000#011000uw ...

side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which

Symbolscorrespond. x%x1000#x11000u ...
—

x11000#x11000uw ...

x11000#x11000u ...

X X XXX XH#HEXXTXXXXU ...

accept

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

Turing Machines (TMs)

Automata vs Turing Machines

« Turing Machines can read and write to input “tape”

* The read-write “head” can move arbitrarily left or right

P States :
» The tape is infinite l input || blanks

head
albla|b|u|u|u g
« A Turing Machine can accept/reject at any time

DEFINITION 3.5

Call a language Turing-recognizable if some Turing machine
recognizes it.

Turing Machines: Formal Definition

DEFINITION 3.3

A Turing machine is a 7-tuple, (Q,3,1,6, qo, Gaccepts Greject), Where
Q, X, I' are all finite sets and

1. @ is the set of states,

. 2 1s the input alphabet not containing the blank symbol L
. T 1s the tape alphabet, where u = T'and ¥ C T,

.0: Q xI'—@Q x T x {L, R} is the transition function,

qo € ('read e st: Write move

. Qaccept € @ 1s the accept state, and

N QNN W

. Greject € @ 1s the reject state, where greject 7 Gaccept-

Formal Turing Machine Example

Ou ...

Ou ..

Ou ...

Ou ..

oy

XxXu ...

accept

Mov

~

-

Read char (0 or 1), cross it off, move head R(ight)

Accept if all
crossed out

Move Left
until x

X—>R

N same char /&/ﬁ'

Cross off

Y

#—L
(E%EZ:::) 0,1—L

Turing Machine: Informal Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Ao =~ “* oo #t is found, reject.
Cross off symbols as thew We will (mostly) “n track of which

symbols correspond. stick to informal
descriptions of

2. When all symbols to Turing machines, -n crossed off,
check for any remaining ¢ like this one At of the #. If any
symbols remain, reject; otherwise; .ccept.”

TM Informal Description: Caveats

« TM informal descriptions are not a “do whatever” card
« They must be sufficiently precise to communicate the formal tuple

 Input must be a string, written with chars from finite alphabet

« An informal “step” represents sequence of formal transitions
* |.e., some finite number of transitions
* |t cannot run forever
« E.g., can’t say “try all numbers” as a “step”

Non-halting Turing Machines (TMs)

THIS IS A
VERY
IMPORTANT
SLIDE

* A DFA, NFA, or PDA always halts
- Because the (finite) input is always read exactly once

« But a Turing Machine can run forever
 E.g., the head can move back and forth in a loop

« A decider Is a Turing Machine that always halts.

DEFINITION 3.6

Call a language Turing-decidable or simply decidable if some
Turing machine decides it.

Formal Definition of an “Algorithm”

« An algorithm is equivalent to a Turing-decidable Language

Turing-recognizable

decidable

context-free

Check-in Quiz 10/19

On Gradescope

End of Class Survey 10/19

See course website

