CS420
Chapter 4: Decidability

Mon, October 26, 2020

Turing-recognizable

decidable

context-free

HW5 Questions?

Recap: Turing Machines “in Real Life”

« Optimal ordering in restaurants, I.e., the Knapsack Problem

MY HoBgY:
EVBEDDING NP-(OMPLETE PROBLEMS. IN RESTAURANT ORDERS

CHOTCHRIES Rssmunﬁ;T}

o H PPETIZERS
HERE, THESE BAPERS ON THE KNaPSACK.

! .
WED FROT 215 o e S | ~ w
FRENCH FRIES 275 \ LISTEN, T HAVE SIX OTHER
GIDE 5ALAD 235 TABLES T0 GET T0 .
= AS FAST AS POSSIBLE, (F (DURSE. WANT <l >
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESYIAN? / By ,
MozzAREUA STICKS H.20 ., lil‘@

SA PLATE 5.80 \
v (YIER

— SANDWICHES ~—
BARBECNE L 5

« (or really any optimization problem)

* NP-complete =
« set of problems that a nondeterministic TM can decide in polynomial time

WED LIKE EXACTLY $15.05

WORTH OF APPETIZERS, PLEASE. ’
= ¢

il . EXACTLY? UHAL.

Recap: Turing Machines “in Real Life”

« Route planning

BROTE-FORCE DYNAMIC |
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
¢ O (ﬂ‘lzﬂ)

STILL WORKING

ON YOUR ROUTE?
« And scheduling too
« Actually any kind of problem solving:

\
. % A
SHUT THE
HEW UFR
 E.g., doing hw, playing board games, cooking

« TMs = computation = programs! |Remember this!

A Turing Machine in Real Life, Literally

« Eating candy???

WHEN Im CAME TO EATING STRIPS OF CANDY BUTTONS, coee G
THERE WERE TWONQN STRATEGIES. SOME KIDs oeeee
CAREFLLLY REMOVED EACH BEAD, CHECKING 0099’*’-‘
CLOSELY FOR PAFER RESIDUE. BEFCRE EATING. SRl

GTHERS TORE THE CANDY
OFF HAPHAZARDLY,
SWALLOWING LARGE SLRAPS
OF PAPER AS THEY ATE .

THEN THERE WERE THE LONELY FEW OF US
WHMO MOVED BACK AND FORTH ON THE STRIP, R
EATING ROWS OF BEADs HERE AND THERE, 3 i it
PRETENDING WE WERE TURING MACHINES.

Turing Machines, Philosophically

« TMs = computation

* Your brain = a computer, so ...

e TMs = thought??? N
* Turing Test: chatbot or human? -

6 Forget Turing, the Lovelace Test Has a
Better Shot at Spotting Al

To pass the Lovelace Test a machine has to create

———

something original, that it wasn't programmed to do.

e Lovelace Test: Can TMs create Art???

Decidable Problems about
Regular Languages

Flashback: HW1 Problem 1: The “run” fn

@ cs.umb.edu/~stchang/cs420/f20/hwl.html @ D *»

1 A Data Representation for DFAS

Recall Definition 1.5 from the book: a DFA is a 5-tuple (@, X, d, qo, F'), where:

() is a finite set called the states,

Y. is a finite set called the alphabet,

§:Q x ¥ — (is the transition function,

qo € @ is the start state, and

F' C Q is the set of accept states.

Since most of the course material on DFAs involves designing, running them, and
proofs by construction, we will use programming as a nice way to get hands-on
experience.

Your Tasks

1. Design a data representation for the DFAs from the textbook. You may use
objects, structs, or anything else available in your language.

2. Implement your data representation in your chosen language.

3. Write a predicate (a function or method that returns true or false) that takes an
input string and an instance of your DFA and "runs" it on the DFA. It should
return true if the DFA accepts the input, and false otherwise.

What “machine” implements the “run” fn?

* Is the “run” function a regular language?
* Is the “run” function context-free language?

« What does it mean to say the “run” function iIs a language???

The language of the “run” function

Apea = {(B,w)| B is a DFA that accepts input string w }

Interlude: Encoding Things into Strings

« ATuring machine’s input Is always a string

« So anything we want to give to TM must be encoded as string

- Notation: <Obj> = encoding for object Obj as string
- E.g., Obj = a DFA
» Can you think of a string “encoding” for DFAs???? (hint: hw1, again)

« Combine multiple Objs via tuple, e.g., <B,w> from prev slide

Interlude: Informal TMs and Encodings

« An informal TM description:
« Won't always describe exactly how input is encoded
 Implicitly checks that input is a “valid” encoding

The language of the “run” function

Apea = {(B,w)| B is a DFA that accepts input string w }

Turing-recognizable

* Want to prove:

Apra 1s a decidable language

decidable

® o o
context-free

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

» Create a Turing machine that decides Apfa
* (A decider is TM that, for all inputs, always halts and accepts/rejects)

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

« “Simulate” =
« Start in the starting state “q0”

* |terating over input one char at a time
 Call delta transition fn to compute the “next state”

* You all already “proved” this in hw1! Remember:
TMs = programs

Thm: Anga is a decidable language

Anea = {(B, w)| B 1s an NFA that accepts input string w}

» Create a Turing machine that decides Anfa:

N = “On mput (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C, using the procedure for
this conversion given in Theorem 1.39.

2. Run TM M on input (C, w).
3. If M accepts, accept; otherwise, reject.”

* You all already “proved” this one too!
* Previous (constructively) proved theorems are a “library” of TMs

Remember:
Constructive Proofs =
libraries of TMs = programs

Thm: Agrex is a decidable language

Arex = {(R, w)| R is a regular expression that generates string w }

 Create a Turing machine:

P = “On input (R, w), where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure for this conversion given in Theorem 1.54.

2. RunTM N on input (A4, w).
3. If N accepts, accept; it N rejects, reject.”

* Yet another theorem you already “proved”!

DFA TMs Recap (So Far)

e Apra = {(B,w)| B is a DFA that accepts input string w }
« Deciding TM = program = HW1 “run” function

o Anra = {(B,w)| B is an NFA that accepts input string w}
« Deciding TM = program = NFA->DFA + “run”

o Arex = {(R,w)| R is a regular expression that generates string w }

« Deciding TM = program = Regexp->NFA + NFA->DFA + “run”

Remember:
TMs = programs

Turing machines = Programs
* Creating a TM = Programming

 E.g., If HW asks “Show that lang L Is decidable” ...

* .. you must create a TM that decides L; to do this ...
e ... think of how to write a (halting) program that does what you want

« Hint: When creating a TM, use previously proved theorems

* |.e., just like you use libraries when programming!

 E.g., “Library” for DFAs:

* NFA->DFA, Regexp->NFA, union, intersect, star, homomorphism, backwards,
Aprar Anrar Agexs -+

Thm: Epra is a decidable language
EDFA — {<A>‘ A 1s a DFA El]fld L(A) — @}

 Create a Turing machine:

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

* l.e., check if accept states are “reachable” from start state

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

 Trick: Use Symmetric Difference

Symmetric Difference

L(A) L(B)

L(C) = (L(A)NI(B)) U (Z(A) N L(B))
L(C) = 0 iff L(A) = L(B)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

» Use Symmetric Difference L(C) = ((A) ﬁm) U (mﬁL(B))
L(C) = 0 iff L(A) = L(B)

e Construct C = Union and intersection of machines A and B
* Use “library” TM for: Eppa = {(A)| Aisa DFA and L(A) = 0}

F = “On input (A, B), where A and B are DFAs:
1. Construct DFA C' as described.
2. Run TM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

Check-in Quiz 10/26

On gradescope

End of Class Survey 10/26

See course website

