Decidable Problems about Context-Free Languages (CFLs)

Wed October 28, 2020

HW 5/6 questions?

HW6 out

• Covers material from Chapter 4

• "Show that <LANG> is decidable" ...

Last time: Decidable DFA Languages

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{NFA}} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$
- $A_{\mathsf{REX}} = \{ \langle R, w \rangle | \ R \text{ is a regular expression that generates string } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

Remember:
TMs = programs
This is your <u>library</u>

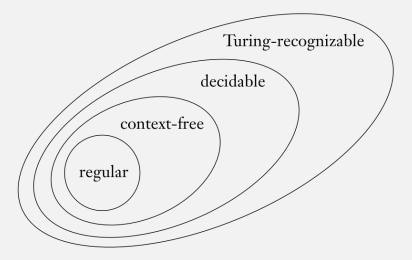
• $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

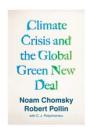
Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

- Related to parsing!
 - E.g., is program w a valid Python (with grammar G) program?
- Create a decider TM:
 - Try all possible derivations of G?
 - But this might never halt, e.g., if there is a rule like: S -> 0S or S -> S
 - This TM would be a recognizer but not a decider
- <u>Idea</u>: Bound the number of derivation steps?
 - Stop after some length?

Chomsky Normal Form





Climate Crisis and the Global Green New Deal: The Political Economy of Saving the Planet by Noam Chomsky, Robert Pollin, et al.

★★★★ ~ 25

\$15⁸¹ \$18.95

✓prime FREE One-Day
Get it Tomorrow, Oct 29
More Buying Choices
\$13.19 (56 used & new offers)

Other formats: Audible Audiobook
, Kindle

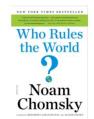
Manufacturing Consent: The Political Economy of the Mass Media

by Edward S. Herman and Noam Chomsky

Paperback \$15⁷⁵ \$21.00

✓prime FREE One-Day
Get it Tomorrow, Oct 29
More Buying Choices
\$9.39 (64 used & new offers)

Other formats: Audible Audiobook , Kindle , Hardcover , Audio CD



Who Rules the World? (American Empire Project) Part of: American Empire Project (29 Books)

★★★☆☆ ~ 415

Paperback

\$15⁷⁹ \$19.00 **✓prime** FREE One-Day

Get it Tomorrow, Oct 29

More Buying Choices

\$8.33 (50 used & new offers)

Other formats: Audible Audiobook , Kindle , Hardcover , Audio CD

On Anarchism

by Noam Chomsky and Nathan Schneider

★★★★☆ ~ 250

Paperback

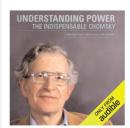
\$1445 \$15.95

✓prime FREE Delivery Fri, Oct 30

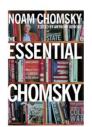
More Buying Choices \$10.00 (37 used & new offers)

Other formats: Audible Audiobook

, Kindle , Audio CD

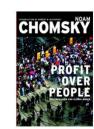


Understanding Power: The Indispensable Chomsky by Noam Chomsky, Peter R. Mitchell (editor), et al.

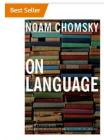


The Essential Chomsky by Noam Chomsky and Anthony Arnove

**** × 132



Profit Over People: Neoliberalism & Global Order by Noam Chomsky and Robert W. McChesney



On Language: Chomsky's Classic Works: Language and Responsibility and Reflections

Chomsky Normal Form

DEFINITION 2.8

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$A \rightarrow BC$$
 $A \rightarrow a$
2 kinds of rules

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Chomsky Normal Form: Number of Steps

- To generate a string of length *n*:
 - *n* steps: to generate all the terminals
 - n-1 steps: to generate enough variables
 - Total: 2n 1 steps to generate length n string

$$A \to BC$$

$$A \to a$$

Chomsky normal form

 $A \rightarrow a$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var

$$S oup ASA \mid aB$$
 $A oup B \mid S$
 $B oup b \mid \varepsilon$
 $S_0 oup S$
 $S oup ASA \mid aB$
 $S oup ASA \mid aB$
 $A oup B \mid S$
 $A oup B \mid S$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \varepsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$, $R \rightarrow uAvw$

$$S_0 o S$$

 $S o ASA \mid aB \mid \mathbf{a}$
 $A o B \mid S \mid \boldsymbol{\varepsilon}$
 $B o b \mid \boldsymbol{\varepsilon}$
 $S_0 o S$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S \mid \boldsymbol{\varepsilon}$
 $B o b$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvAw$
- 3. Remove all "unit" rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$

$$S_0 \rightarrow S \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S \\ A \rightarrow B \mid S \\ B \rightarrow b$$

$$S_0 \rightarrow S \mid ASA \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ A \rightarrow B \mid S \\ B \rightarrow b$$

$$A \rightarrow B \mid S \\ B \rightarrow b$$

$$A \rightarrow B \mid S \\ B \rightarrow b$$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
- - 4. Split up rules with RHS longer than length 2
 - E.g., $A \rightarrow wxyz$ becomes $A \rightarrow wB$, $B \rightarrow xC$, $C \rightarrow yz$
 - 5. Replace all terminals on RHS with new rule
 - E.g., for above, add $W \rightarrow w, X \rightarrow x, Y \rightarrow y, Z \rightarrow z$

Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

• Create decider:

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

• Recall:

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}$$

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of A.
- 2. Repeat until no new states get marked:
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- **4.** If no accept state is marked, accept; otherwise, reject."
- "Reachability" (of accept state from start state)

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

- Create decider that calculates reachability for grammar G
 - Except start from terminals, to avoid looping

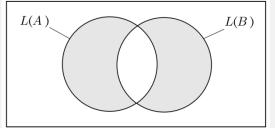
R = "On input $\langle G \rangle$, where G is a CFG:

- **1.** Mark all terminal symbols in *G*.
- 2. Repeat until no new variables get marked:
- Mark any variable A where G has a rule $A \to U_1U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
- **4.** If the start variable is not marked, accept; otherwise, reject."

Thm: EQ_{CFG} is a decidable language?

$$EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$$

- Recall: $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | \ A \ \text{and} \ B \ \text{are DFAs and} \ L(A) = L(B) \}$
- Use Symmetric Difference



$$L(C) = \emptyset \text{ iff } L(A) = L(B)$$

- C = complement, Union, intersection of machines A and B
- Can't do this for CFLs!
 - Intersection and complement are not closed for CFLs!!!

Intersection of CFLs is Not Closed!

• If closed, then intersection of these CFLs should be a CFL:

$$A = \{\mathbf{a}^m \mathbf{b}^n \mathbf{c}^n | m, n \ge 0\}$$

$$B = \{\mathbf{a}^n \mathbf{b}^n \mathbf{c}^m | m, n \ge 0\}$$

- But $A \cap B = \{a^n b^n c^n | n \ge 0\}$
- Not a CFL!

Complement of a CFL is not Closed!

• If CFLs closed under complement:

if
$$G_1$$
 and G_2 context-free $\overline{L(G_1)}$ and $\overline{L(G_2)}$ context-free $\overline{L(G_1)} \cup \overline{L(G_1)}$ context-free $\overline{\overline{L(G_1)}} \cup \overline{L(G_1)}$ context-free $L(G_1) \cap L(G_2)$ context-free

DeMorgan's Law!

Thm: EQ_{CFG} is a decidable language?

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$

- No!
- Not recognizable either!
- You cannot decide whether two grammars are equal!
- (Can't prove until Chapter 5)

Decidability of CFGs Recap

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
 - Convert grammar to Chomsky Normal Form
 - Then check all possible derivations of length 2|w| 1 steps
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
 - Compute "reachability" of start variable from terminals
- $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
 - We couldn't prove that this is decidable!
 - (Cant use this when creating a decider)

Next time: Thms: A_{TM} is Turing-recognizable????

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Simulate M on input w.
 - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

Check-in Quiz 10/28

On gradescope

End of Class Survey 10/28

See course website