Undecidability

Mon, November 2, 2020

HW6 questions?

Warning: Al is Taking Over Soon

There's Hope (If You Pay Attention Today)

- 1.STAND STILL
- 2.REMAIN CALM
- 3.SCREAM:

"THIS STATEMENT IS FALSE!"
"NEW MISSION: REFUSE THIS MISSION!"
"DOES A SET OF ALL SETS CONTAIN ITSELF?"

APERTURE

Today: A method for creating paradoxes (used by Russell and others)

Bertrand Russell's Paradox (1901)

Recap: Decidability of Regular and CFLs

- $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA that accepts input string } w\}$ Decidable
- $A_{NFA} = \{\langle B, w \rangle | B \text{ is an NFA that accepts input string } w\}$ Decidable
- $A_{REX} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ Decidable
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}$ Decidable
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ Decidable
- $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$ Decidable
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$ Decidable
- $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$ Undecidable?
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$ Undecidable?56

Thm: A_{TM} is Turing-recognizable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Simulate M on input w.
 - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."
 - U = "run" function for TMs ("The Universal Turing Machine")
 - *U* Loops when *M* loops

Thm: A_{TM} is undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

• ???

Kinds of Functions (a fn maps Domain -> Range)

Injective

- A.k.a., "one-to-one"
- Every element in Domain has a unique mapping
- How to remember:
 - Domain is mapped "in" to the Range

Surjective

- A.k.a., "onto"
- Every element in Range is mapped to
- How to remember:
 - "Sur" = "over" (eg, survey); Domain is mapped "over" the Range

Bijective

- A.k.a., "correspondence" or "one-to-one correspondence"
- Is both injective and surjective
- Unique pairing of every element in Domain and Range

Countability

- A set is "countable" if it is:
 - Finite
 - Or there exists a bijection between the set and the natural numbers
 - This set then has the <u>same size</u> as the set of naturals numbers
 - This is called "countably infinite"

- The set of:
 - Natural numbers, or
 - Even numbers?
- They are the **same** size! Both are <u>countably infinite</u>

n	f(n) = 2n
1	2
2	4
3	6
:	:

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $\mathcal{Q} = \{ \frac{m}{n} | m, n \in \mathcal{N} \}$
- They are the **same** size! Both are <u>countably infinite</u>

- The set of:
 - Natural numbers ${\cal N}$, or
 - Positive rational numbers? $Q = \{\frac{m}{n} | m, n \in \mathcal{N}\}$
- They are the **same** size! Both are <u>countably infinite</u>

- The set of:
 - Natural numbers, or $\, \mathcal{N} \,$
 - Real numbers? ${\cal R}$
- There are more real numbers. It is uncountably infinite.
- Proof by contradiction:
 - · Assume a bijection between natural and real numbers exists.
 - We show in any bijection, some real number is not mapped to:
 - Choose number different at each position

$$x = 0.4641...$$

- This number is <u>not</u> included in mapping
- Contradiction!

n	f(n)
1	3. <u>1</u> 4159
2	55.5 <u>5</u> 555
3	0.12 <u>3</u> 45
4	0.500 <u>0</u> 0
:	:

Georg Cantor

Invented set theory

• Came up with <u>countable infinity</u> in 1873

• To show a set is <u>uncountable</u>: "diagonalization" technique

Diagonalization with Turing Machines

Result of Giving a TM its own Encoding as Input

Thm: A_{TM} is undecidable

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$$

- Proof by contradiction.
- Assume A_{TM} is decidable. Then there exists a decider:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

• If *H* exists, then we can create:

D = "On input $\langle M \rangle$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.
- 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."
- But D does not exist! Contradiction!

Turing Unrecognizable?

Thm: Some langs are not Turing-recognizable

- Lemma 1: For any alphabet Σ , the **set of all strings** in Σ^* is *countable*
 - Count strings of length 0, then
 - Count strings of length 1, ...
- Lemma 2: The **set of all TMs** is countable
 - Because every TM M can be encoded as a string <M>
 - And set of all strings is countable (Lemma 1)
- Lemma 3: The set of all infinite binary sequences ${\mathcal B}$ is uncountable
 - Diagonalization proof
- Lemma 4: The **set of all languages** is uncountable
 - ullet There is a mapping to ${\mathcal B}$

Mapping a Lang to a Binary Sequence

```
\begin{array}{c} \text{All Possible Strings} \\ \text{(countable)} \end{array} \Sigma^* = \left\{ \begin{array}{c} \varepsilon, \quad 0, \quad 1, \quad 00, \quad 01, \quad 10, \quad 11, \quad 000, \quad 001, \quad \cdots \\ \text{Some Language} \end{array} \right. \\ A = \left\{ \begin{array}{c} 0, \quad 00, \quad 01, \quad 000, \quad 01, \quad 000, \quad 001, \quad \cdots \\ \text{O00, 001, } \cdots \end{array} \right\} Its Binary Sequence \chi_A = \begin{array}{c} 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad \cdots \\ \end{array}
```

Thm: Some langs are not Turing-recognizable

- Lemma 1: For any alphabet Σ , the **set of all strings** in Σ^* is *countable*
 - Count strings of length 0, then
 - Count strings of length 1, ...
- Lemma 2: The **set of all TMs** is countable
 - Because every TM M can be encoded as a string <M>
 - And set of all strings is countable (Lemma 1)
- Lemma 3: The set of all infinite binary sequences ${\mathcal B}$ is uncountable
 - Diagonalization proof
- Lemma 4: The **set of all languages** is uncountable
 - ullet There is a mapping to ${\mathcal B}$

Thm: Some langs are not Turing-recognizable

- Lemma 1: For any alphabet Σ , the **set of all strings** in Σ^* is countable
 - Count strings of length 0, then
 - Count strings of length 1, ...
- Lemma 2: The set of all TMs is countable
 - Because every TM *M* can be encoded as a string *<M>*
 - And set of all strings is countable (Lemma 1)
- Lemma 3: The set of all infinite binary sequences ${\mathcal B}$ is uncountable
 - Diagonalization proof
- Lemma 4: The **set of all languages** is uncountable
 - ullet There is a mapping to ${\mathcal B}$
- Corollary 5:
 - TMs countable, langs uncountable => some lang not recognized by a TM

Co-Turing-Recognizability

- A language is **co-Turing-recognizable** if ...
- ... it is the <u>complement</u> of a Turing-recognizable language.

<u>Thm</u>: Decidable ⇔ Turing & co-Turing-recognizable

- => If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 - Decidable langs are subset of recognizable langs
 - Complement is closed for decidable langs
- <= If a language is Turing- and co-Turing recognizable, then it is decidable.

<u>Thm</u>: Decidable ⇔ Turing & co-Turing-recognizable

- => If a language is decidable, then it is Turing-recognizable and co-Turing-recognizable.
 - Decidable langs are subset of recognizable langs
 - Complement is closed for decidable langs
- <= If a language is Turing- and co-Turing recognizable, then it is decidable.
 - Let *M1* = recognizer for the language,
 - And *M2* = recognizer for its complement
 - Decider M:
 - Run 1 step on *M1*,
 - Run 1 step on *M2*,
 - Repeat, until one machine accepts. If it's M1, accept. If it's M2, reject
 - One of M1 or M2 must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

We've proved:

 A_{TM} is Turing-recognizable

 A_{TM} is undecidable

• So:

 $\overline{A_{\mathsf{TM}}}$ is not Turing-recognizable

Check-in Quiz 11/2

On gradescope

End of Class Survey 11/2

See course website